
• 00:00, 00:45, 58:15
Hi all, 
Welcome.

My name is Ben Laidlaw
-------------------------------
My name is Zabir Hoque
-------------------------------

And we are here to talk about Geometry Caching Optimizations that were 
implemented in Halo 5: Guardians.



• 00:00, 00:45, 58:15
• For those that are new to the subject.
Geometry Caching is the storage of vertex motion for quick playback.

• It is like motion capture for character animation 
it allows us to create vastly more complex animations in games
but authored in a convenient format. 

• For those Maya animators out there, they’ll be familiar with the term, 
when they want to do a 3-D playblast of their scene.

• Let me show you an in game example from Halo 5: Guardians, 
from our E3 Headliner in 2015.



• 00:45, 01:00, 57:15
Halo 5 E3: Headliner



• 01:45, 00:35, 56:30
• Beyond being able to do massive scale destruction.

• What we found is Geometry Caching can be leveraged for any kind of Kinematic 
based geometry.

Such as, Animating characters or objects, FXs, Environments, Skyboxes, and crowd 
systems, 

• The authoring teams of this content can run the gamut of your studio, 
it’s more of a compression method than a team specific task.

• What we are here is to really talk about 
is moving geometry around on the GPU as fast as possible.



• 02:10, 00:10, 55:55
• We are talking about moving over a million gpu transforms
at 60 frames per a second gameplay
that can be driving up to 4 million polygons. 



• 02:30, 00:45, 55:45
• Zabir and I didn’t do this all alone, so here is a quick shout out to the core team 

people

• Michael Boulton was the engineer whom made our first homebrew geometry 
caching pipeline

-the fore-father of what we are presenting today.
• Chris Woods was our fearless lead.
• Zabir Hoque was our white knight engineer that came in during the heart of 

crunch, 
-I’ll pass the torch to him in a little time.
• Alex Hogan was the Technical Artist that helped with the initial testing and 

implementation.
• Mike LaFave was a content creator for our project, that thoroughly put the process 

through its paces.
• My name is Ben Laidlaw I’m a Technical Artist that became in charge of the 

content authoring story.
• I also want to give props to all the other people that worked on us with this at 343.



• 03:15, 00:45, 55:00
• For the overview of this talk, we’re going to hit up how we derived our concept on 

geometry caching
and how we mentally broke down what we optimized

• With a little background story in how we got there.

• Then we will break down the optimizations,
First by the core architecture
Followed by the components

• And then will wrap it up, with some time for questions.



• 04:00, 00:30, 54:30
::Breath::
• In the spring of 2015 we were coming in hot for the E3 Headliner.
It was going to be the opening act for E3, so all eyes were on us.

• Like most studios, our frame budget spiked 
as we tried to squeeze the best we could out of the game
On the other side, we had production eyeing to cut any assets 
that would loosen the gordian knot. 

• You know the usual, eye of production fun. The eye of sauron.
So we needed to improve our work



• 04:30, 00:30, 54:00
• For those wondering why we needed to improve.
Let me give you a little background.

• I will explain how we ended up developing our geocaching tech over time.
From our initial implementation, through to shipping of Halo 5: Guardians

• and beyond to what our full framework was to continue our development



• 05:00, 00:45, 53:45
• Our very first implementation of geometry caching, is what we have come to call 

Fluid.
It is a geometry sequence where each frame can potentially change its topology. 
Overall it is the catch all, for all types of complex motions
I have a deer that transforms into a man, into a gun, you can pretty much do anything.

• We based this method on what we had seen other people do.
This seems to stem from how the VFX industry write simulations frames to disk. 
A practical derivative of this work is the read/write from an alembic file
For instance, Maya’s geometry cache method used by animators

• This is a good initial working model, but it’s not a practical shippable method 
due to the memory and perf cost associated with these frames at 60 fps. 
The files are a bit too big, and a bit to slow. If you need a small set of these in your 
game it will work at 30 fps.

• So one of the last valiant acts from Michael Boulton before he got pulled off 
was to implement a second option for us called Rigid.



• 05:45, 00:45, 52:30
• Rigid is what we defined as a sequence of geometry where multiple vertices 

share a single transform. 
i.e. the concept of bones in object transforms, particles with instanced geometry, 
your standard rigid body simulation, Flocks, Swarms, and Leaves blowing in the wind.

• This became our golden child.
Rigid accounted for a majority of our geometry cached assets we shipped.

• However these two methods are not enough to ship.
We were still in the need for deformation style motion, Bending metals and such
and one night Zabir was doing some crazy scientist math at home,
and he realized our next evolution in this pipeline.



• 06:30, 00:45, 51:45
• Thus the creation of what we called Soft. Soft is a single transform per each 

vertex. 
This allowed us to leverage the hundreds of thousands of rigid transforms we had 
easy access to 
and they were applied to each vertex instead.

• Creating nice bending geometry. like metal deformation, tarps and flags waving
or even lava.

So with Fluid, Rigid, and Soft we shipped Halo 5: Guardians.
::BREATH::

• However this is not where we stopped. 
To further develop our system, we created a framework for geometric motion 
at least as far as how we thought about it 
• which lead to how we optimized it, and how YOU can further expand upon it. 
::point to people::



• 07:15, 00:45, 51:00
• So with the full framework. we present that there are five types of inherent 

geometry caching methods, 
Static, Rigid, Soft, Skinned, and Fluid. This is designed to be read top to bottom, left 
to right. 

• Beyond our shipping methods we added three more contexts
• Core Architecture is our bridge across all the methods,
These are the shared heuristics, such as, geometry, transforms, and rendering 
• Static geometry is an additional method being called out, As static geometry has 

no transforms over time, 
This becomes very important in cost reduction. I believe we are all inherently familiar 
with environment geometry
• Skinned is as you may imagine deals with character like deformation
this is where we use multiple transforms upon multiple vertices, 
This is way cheaper than soft, but not as cheap as rigid.
but more complicated for artist to author and implement.

• Also you can blend these types as hybrids versions, too.



• 08:00, 00:30, 50:30
• The order in which we will present these optimizations
is a little different than how we abstract their relationships
based on their use cases and ease of implementation.

• The Core Architecture is our first point of attack, 
It not the panacea, but it does help every single component
Zabir will talk in depth on that.

• Followed by Fluid as this is where everyone usually starts off, building their 
geometry caching pipes

Then comes our golden child rigid,
Followed, by Static, Soft and Skinned













































































































• 29:30, 01:00, 28:30
• +1:00 padding currently, we can add more if need be

- Since this is a canned animation Leverage XB1 DX11.x async compute
- Start generating next frames VB cache this frame. 
- I didn't fully finish this before I left, but it was mostly working.

Also limit the render calls of small triangles, with this type of moving geometry you 
can have something quickly move from a hero object to off in the ackground, LODing 
will help will get to that kater, but this should be done in addition too.

-16-20







• 31:45, 00:45, 26:30
Kraken Reveal



• 32:30, 01:00, 25:30
• At this point we are going to switch over to the authoring side for a bit.

• There are many content creation softwares you can use. We used Houdini for 
its procedural nature, 

However at each studio, you have your own pipeline so keep these issues in mind.
Static needs to handle a series of motion dependent procedural culling methods
Rigid’s needs an id per a piece, In Houdini we used the name attribute
In Maya you can use an id for each bone, or shape node
Plus you need access to as many simulation, particle, and animation tools as you can 
get your hands on.

• For soft you need a series of deformers, the ability to ray cast, and a flowing VDB 
mesher.

Skinned certainly requires a rigging system. Generally the more procedural rigging 
you can do the better.

• Finally Fluid needs the ability to change the geometry every frame. This is more 
than just VDB remeshing.

You need the creative ability to morph to any shape.



• 33:30, 01:00, 24:30
• Regardless of your authoring packages you need to maintain specific attributes in 

your workflow.
I want to point out that, Houdini and Maya have two different sets of terminology for 
data levels
And your intermediary file will have it’s own. This screwed us up, so be careful.



• 33:30, 01:00, 24:30
The data to be aware of is:
*Position - your basic XYZ location per a point
*RestPosition - it is like your T pose for that geometry
*Plus you need to maintain an ordered list of points, 
*so that for export your point order over time remains constant

*UVs, Normals, Color, and Skin Weights 
*are regular attributes you need to maintain
*Along with materials at the Primitive level
*PartId, or string based Names, are used to identify the parts per a transform
*And maintain a primitive list similar to your point list in order to maintain the data 
hierarchy for export

*One thing to be cognisant of, is some of these attributes can be maintained at 
different levels
*Such as, materials so be aware of that for when you export your data



• 34:30, 00:30, 24:00
• Coming back to the Intermediate file formats, we use, and strongly recommend 

Alembic

• We did not use, nor recommend FBX, for this pipeline, 
With a big asterisk for using the skin method

• Alembic is used across a host of major content creation packages, 
and has some practical inputs into a lot of off the shelf engines nowadays. 

• We use it because it’s fast, Maya even uses it for it’s Geometry Caching.
I do not recommend using it directly in your engine itself, thus our talk, 
but technically you could for Fluid.



• 35:00, 00:45, 23:15
• Let me hit a few major points on Alembic. First it is open source. 
You no longer need to maintain .xml files in your pipe. 
Nor do you have to precondition your scene file before export.
I’ve heard multiple times, “It’s pleasant to work with”
It’s not a black box, it has python and C bindings so you can access anything.

• You will not be using it alone. The VFX industry uses it, too. Even the scientific 
community uses it…

• I will admit it is not a scene description file format, like USD, FBX, or Collada
But the beauty is, it’s not trying to be. It handles geometry and it does *bleeping* 
well.
For sequences of geometry the file format is bigger.
However, you can read only the data you need, on the frame you need.
You don’t need to load a 3,000 frame sequence, to read one frame and one line of 
data.



• 35:45, 01:15, 22:00
• To wrap up this core architecture section, I want to hit up one last topic. This is 

integration and performance testing.
You will want to run these test every time you update the code, or your build.
Geometry Caching is a tiny part of your engine. And it shares most of it’s time with 
many other systems.
• Make sure you build the system with a kill switch, for the entire system, for de-

bug-ing
Being the new kid on the block, you’ll get picked on and blamed as the culprit a lot
You’ll want to make sure you fix the right issues
• As for alembic and your export/import method 
Make sure to test with different frame rates, with no geometry or transforms, and with 
or without attributes. 
Alembic will restructure itself for the best storage method.
And you want to avoid issues related to cross program terminology, collapsing 
alembic files, and artist screw ups.
As noted before “deletion” i.e scaling to zero, can get hairy with interpolations 
so test these series of deletion and creation options.
• As for the actually microsecond, pix style measurements, understand your 

baseline
when our system was active, but not transforming, it was 2 microseconds,
Record your transforms calculations and shading uniquely, together these are the net 
changes on you system.



Since this is a sequential asset, make sure you have run commands for start, stop, 
reset, and go to frames



• 37:00, 00:30, 21:30
• Ok everyone take a stretch for a minute!
::PAUSE::
We are going to start diving into the component systems now.

• To prepare yourself for Fluid it is best to think of this component type as a 3D
Zoetrope

These poses of a bird flapping are spun around, 
and as you look through a slit you perceive a bird in flight...

• This concept was thought of over 130 years ago.
Today we use this concept with VDB meshing, and other artistic motions.



• 37:30, 00:15, 21:15
• I have an extreme love hate relationship with fluids,
So that is how we are going to define our Pro’s and Con’s

• It’s usually the first component type implemented,
So it has it’s own unique optimizations that will help



• 37:45, 00:45, 20:30
• Fluids were our first love, or really the first relationship we had. We thought fluid 

were going to be our one true love. 
And as it turns out it was more of an infatuation, a learning experience to say the 
least.

• It is the easiest to export, as each frame has no history with the last. 
It allows you to rapidly prototype, and get it in the game.
And there is no limit on the type of asset you can export.

• However in games the microseconds matter. and per frame changing topology is 
expensive

Fluid consumes a lot of memory and processing time.
We found anything we did, that we thought needed to be fluid,
Could be done be done with rigid or soft, and put into a sequencer.

• However, this is not a reason to discount fluid. It has a time and a place for art 
and for rapid prototyping. Plus it can be optimized far greater than we did.



• 38:30, 00:50, 19:40
• In order to optimize Fluid further Fluid Topology inherently does not need 

transforms, 
so don’t include them in your data components
In large rigid assets this is where all the bloat comes from with zero transforms.

• Subsequently having a good streaming system to the GPU matters, 
There is no inherent connections between each frame, just a very predictable read 
from memory.
So the shader does not need to deal with interpolation

• This is similar to an alembic file, however you may be tempted, don’t use alembic 
directly in your engine

All the previous core optimization would be thrown away.

• An important thing to mention is we did not over optimize Fluid,
Once we started using Rigid and Soft we stopped researching Fluid
So there can be more hybrid methods out there.
I’ll reference two talks at the end, at this GDC alone, that can help.



• 39:20, 00:20, 19:20
• Before we exit from Fluids, I wanted to show one example of the topology of fluid.

• Notice the changing topology of this fluid mesh
as will come back to this shape later to optimize it.



• 39:40, 00:20, 19:00
• Moving on to Rigid, here is a video of where we strictly used our rigid method at 

the end of the game. 

• The funny things is we originally had an even larger swarm on the screen, 
but our outsourced vendor whom did the sequence after ours 
only showed a small fraction of a swarm at end

• So we had to significantly reduce the amount we had on screen.



• 40:00, 01:00, 18:00
Halo 5: Guardians End Game



• 41:00, 00:20, 17:40
• With Rigid, I want to cover the benefits of the golden child, Plus some of it’s 

inherent problems,
How we use subsitizing to simplify our authoring for rigid
Why we have some of our art defined programming limit
And how to maximize rigid more with Instances, LODs, and Sprites
and a few additional authoring notes



• 41:20, 00:45, 16:55
• Rigid hands down was our best method, we used it for everything from building 

debris, to flocks of birds, to leaves blowing in the wind.

• We even realized we could leverage it in places traditionally reserved for our fx, 
flocking, and animation tools.

If those assets did not need to interact with the player, our system had a significantly 
reduced overhead in comparison.
This way the prepared assets would not get cut and breath more life into the level.

• We could reduce birds to a few polygons, and send hundreds, or thousands flying 
through the air.

It’s a trade off, but it allowed us to retain cheap animation in the scene, 
and use those interactive technologies where it mattered, on the ground or in your 
face.

• It’s important to remember this is not a particle or a crowd system, nothing runtime 
interactive is happening,

However, if you componentize this code you could use it based on event triggers
In essence what we are doing is trading memory for runtime cycles,



• 42:05, 00:50, 16:05
• This is a good time to explain about the viability of having over a million 

transforms at 60 frame per second.
The million transforms was actually a test to see the upper limits of our 
system, with nothing else in the scene.

• The key thing we found out is, there are only so many pixels on the screen 
at 1080p

Unless you are at 4k can you really comprehend the different scale factors 
of increased transforms beyond a hundred thousand
We are not trying to compete with Krakatoa, this is kinematic baked motion in 
a AAA game.

• In production we never came close to needing this.
However what this does mean is that when we show a percentage of this 
many parts
Those pieces are moving extremely efficiently, fast, and cost us very little



• 42:05, 00:50, 16:05
• For general aliasing issues.
Keep your materials and textures simple if you are pushing a lot of geo the 
beauty is in the complex motion. 
A pixel shader will suffice with over a hundred thousand transforms on screen. 
Plus you can just use a ribbon.



• 42:55, 00:30, 15:35
• Subsitizing was one of the key methods we used to reduce complexity 
with a significant number of transforms on screen

• Subsitizing is the reason why phone numbers are broken into patterns,
Humans have a hard time comprehending around 7 digits, 

• Try and quickly count the stars on the screen for instance.  
::pause::
It is 10.

• If you have ever built crowds, you learn 3 is a base for variation and 8 is more 
than enough.

So with a handful of unique models we had more than enough.



• 43:25, 00:50, 14:45
• Which leads us into our next topic, instancing, LODs, and Sprites
With Rigid we really just have a keyframed based transform cloud.
So you can put anything on those transforms.

• You can instance from a common GPU memory buffer across all those 
transforms 

to reduce your disk foot print, and the amount you stream to the GPU
Render time does not go down, but it’s cheaper on disk than 30,000 of the 
same model.
Plus it reduces the memory bottle neck coming from the hard drive.
Unfortunately we did not have this setup for those swarms in fact, and it cost 
us alot.

• You can even do level of detail, by rendering only select models from the 
common memory buffer, or

You can use the scale to zero method we used for deleting based on the 
zdepth.



• You can even use sprites, or billboards, with this method, By unwrapping 
an instanced grid, towards the camera.

These all require a more complex runtime shader, but the IO and streaming 
benefits are heavily worth the effort.



• 44:15, 00:25, 14:20
• To wrap up on the shear scale factor, 
I’m going to draw reference from Alfred Hitchcock’s “The Birds” filmed not too far 
from here.

• This was filmed in 1963, way before computer graphics in FX
Only a handful of those birds are alive, the rest are just static props
But playing with human perception we can use that to our advantage.



• 44:40, 00:30, 13:20
• Zabir mentioned our limits already, so I’ll be succinct.
Each asset has it limits, and the artist should be aware of this, 
as they are in the best position to know what transforms or pieces of geometry 
to cut.

• 32 thousand transforms was good for our larger building assets we 
destroyed.

However a majority of our assets used half as many transforms
So for each studio and game type you may want to limit 
at between 4k to 65k transforms



• 45:10, 00:30, 12:50
• Additionally we limited the transforms duration based on screen time.
However, when a flock of birds has to cross a whole level we did run into these 
limits.

• However a single asset across a level makes culling an issue, but you can 
actually centipede these animations, 

by splitting it into multiple assets, qued in a sequencer to delete and create 
from one section to the next. 

• So these time limits weren’t truely the issue it was distance.
You can handle this under the hood, but we would at least recommend to keep 
the frame range from 1,800 to 7,200
to best compress your data.



• 45:40, 01:00, 12:20
• A few last authoring notes for rigid. Rigid has numerous ways to author, 
Including particles we used to authored the swarms, Rigid Bodies were used 
in the Kraken Reveal and a lot of E3 trailer.
-The conversion of high quality animated mechanical motion, like Shon 
Mitchell did on our team.

• An important note is that maintaining over time a part id, per a transform,
in an artist based workflow can be complex. 

For RBDs we need to pre designate the ids on input and fracture, and make 
sure they didn’t overlap from multiple inputs.

• We also needed to use connectivity based dictionaries to make sure 
each id is assigned correctly.

You can’t have multiple transforms on one part. This should not be post 
processed either, 
as calculating this on the static pre-simed frame is more efficient than doing it 
over a sequence.
This does require an artist to maintain a part id through their workflow, 
However unlike a rig it is more like a material, but think how often art goes 
without materials into the game.



• Another item is to make sure to combine multiple parts traversing the same 
motion into a single part id.

You don’t want to pay for the same transforms over and over again.



• 46:40, 00:05, 12:15
• Moving on to static, Unfortunately no videos
...I leave you with a stoic start state instead.



• 46:45, 00:10, 12:05
• At the very beginning we didn’t focus on the end states of our geometry caches
We got caught up in making it move.

• So this is a section born out of our mistaken assumptions



• 46:55, 01:15, 10:50
• The majority of our unaccounted for time at the end of project fixing the static 

geometry
You don’t want costly moving geometry pretending to be static,
Nor should you hide it out of sight, it cost additional cycles, You need to kill it.
When you use state changes and sequencers, 
you can efficiently slice up any moving geometry to just when it moves
You should build this strictly GPU based, but use your traditional authoring methods.
• One of the biggest culprits in our E3 Trailer was triggering all the towers at once,
Our performance spiked for a few frames, All we needed to do was to stagger 
the start times, to the start of the beats. This removed the spike, and reduced 
holding frames, 
saving us disk space, too
• Also we made the assumption if you destroy something, there is nothing left in the 

end.
In fact, there is often something left at the end, 
You can’t have everything sink through the ground, especially giant towers that 
collapse
So you want to clear your GPU buffer of this whole sequence in favor of a single end 
state
• Additionally it’s important to LOD these end states, It seems simple, but we 

screwed that up.
• Another oddity we came across was how often we used looping cycles. Flags, 



lava, and flocks.
The geocache should able to maintain a loop without the end states being called, so 
that 
there is not a spike every cycle.



• 48:10, 00:45, 10:05
• As far as authoring, this may seem very ungame like, but perspective cull your 

end states 
and the parts of geometry that move out of sight.
• Take for instance a simple explosion,
When it explodes, each part needs to be completely enclosed as it freely rotates
If these parts go off a cliff they need to be culled
When they land, the side touching the surface needs to be culled
When they start, you don’t want to include the inside of the surface.

• However when you model, you model with the intention of those parts exploding, 
so you need to model a shell as well as the interior pieces

• Additionally if a section of a building explodes you need to include 
the undamaged, unmoving pieces in your regular environment geometry
This becomes a team hand off issues as the environment modeler,
And the fx artist need to hand geometry back and forth to each other and maintain 
those puzzle pieces.



• 48:55, 00:30, 09:35
• Zabir mentioned a solution for runtime collision, so this is more an alternative.

• If you need additional collision. You can include it in your environment geometry, 
As a state machine, in your sequencer, or in a character rig
We used a whole range of these for the E3 sequence

• We also had this happen in the kraken Reveal when we were told, 
nobody will ever be able to run up and touch, the central pillar,
but it was proven to be extremely easy to do
so we had to patch in a collision mesh in a state machine for this.



• 49:35, 00:10, 09:15
• Soft is the cool invention by Zabir to optimize deforming geometry. 

• We tried cranking this up to 11 in this D L C multiplayer level, Molten.
learning a few valuable lessons in doing so.



• 49:45, 00:10, 09:05
• So we are going to hit up the pros and cons for soft, 
Plus a lesson learned in extra vertex attributes, and two topology examples. 



• 49:55, 00:45, 08:20
• Out of the box I’m going to say Soft is relatively expensive in memory 
compared to skinning and using runtime noises.

• However Soft is a beautifully simple catch all for all deformations. 
Bending Metals, Shape Morphing, Fluids, Flags, Cables, Vines, and Lava
It’s extremely easy to author. You can use any deformer from any package.

• It’s also extremely simple to add to your system after rigid,
and the surface is implicit, so there is no geometry to store. 

• Plus we know we can push unreasonable amounts of points
The lava assets represent over 83 thousand animated vertices, across 7
assets
That carry color and use a custom shader, 

• As we mentioned with static, only use soft when you can see it. It is 
relatively expensive. 

Make sure you culling spheres are tight, and you stitch large assets like this 
together.



• 50:40, 00:45, 07:35
• I did want to call out one large assumption and shortfall of this methods 

especially in regards to the Lava,
Texture density is still far above vertex density by a general magnitude across a 
surface area.
A rough equivalent is we used about 5, 128x128 textures arrays at 180 frames
At roughly 175mb of “total” memory.

• We could have used the same sim as a nicely rendered texture array and the 
tessellator for higher fidelity assets

The main falls, just barely worked using a remapped 8 bit float channel
Thus a call out to the nice work of Matt Sutherlin to compensate for the flat areas.

• Any FX artist will tell you why you need additional attributes for FX as an option
But I would say focus on the transforms use by all these assets,
And then add additional attributes as second tier options.



• 51:25, 00:30, 07:05
• If you can remember the mesh on the left from our fluid topology
On the right we have a projected mesh on that surface that is game usable.
By doing this we can convert a majority of all of our changing topology meshes,
Like the lava fluid simulation into a cheaper soft method.

• If you are just using deformers than straight away you can use this method.
The only key is to make a convincing looping geometry, 
Which if you are used to tileable textures, you can use the same method 
but with time to blend the shape with it’s beginning loop.



• 51:55, 00:30, 07:35
• In the previous method I clearly did not optimize the mesh to that surface,
but just like creature topology where you can add edge loops to where it matters,
You can do the same for soft.

• Here is an example for a cloth on a square table,
If you drop the cloth on the right you’ll get weird fold patterns at the edge, and waste 
vertices in the middle and the sides.
The one on the left has diagonal edges so that the cloth can accordian nicely at the 
corner of the table.

• You can pretty much contort to any shape, or rag with a hole in them like some of 
our ripped tarps,

The only rule of thumb for us, was one connected shape per an asset



• 52:25, 00:10, 07:25
• The last component on our agenda is skinned.
I imagine everyone is familiar with HIK systems and motion builder
these represent a vast tool set in animation that speaks to the complexity of this 
pipeline.



• 52:35, 00:10, 07:15
• First we are going to hit up the pros and cons, of using this within a geometry 

caching system
and an alternative authoring story.



• 52:45, 00:50, 06:25
• This is hands down the most efficient with best compression method of storing 

deforming geometry.
It does require an additional attributes such as weighting for skinning that does adds 
more byte depth to the GPU struct, 
and it requires you to have the most complex runtime shader.

• This also requires you to do rigging and skinning in your authoring package
which we have successfully avoided to this point.
Overall the cost of implementing this type of saving for us is not worth the investment 
and authoring hassle for the type of content our team was creating.
We can just as easily use our very robust character pipeline, instead of re-inventing 
it.
As was the case if we needed this types of savings we needed everything else
associated with it.

• However you can use this technology and componentize the system to a very 
effective means.

I’m going to defer to another GDC talk from this year by Mario and Norman called the 
“Illusion of Motion”
Where at their studio in complete unknown parallel development has done this work 
and it’s an amazing savings
Where you can get a character's worth of motion of 166 minutes, in two 4k textures.



• 53:35, 00:45, 05:40
• So I’m going to leave skinned out on his note, 
For deforming and complex objects as buildings and machinery 
there is a wide array of procedural rigging and animation techniques that could be 
leverage, 
that I have not had the reason to explore. 

• Think of a snake rigs, something relatively simple, but this could be automated to 
have say hundreds of worms 

and creepy crawlies wriggle over something, in a flocking pattern that would be 
amazing.

• At the beginning of this talk I defined Geometry Caching as the storage of Vertex
Motion

However we primarily focused on destruction and designed our system based on the 
components required to build a crowded stadium
So there are probably dozen of authoring stories that simplify the traditional Skinning 
and Rigging pipeline
Such as Mario and Norman did in parallel.



• 54:20, 00:30, 04:00
• So in conclusion we have five different components for our geometry caching 

system, 
Static, Rigid, Skinned, Soft, and Fluid plus the core Architecture.

• For the far future, You could have an export process that mitigates the switching
between these different methods.

For each individual method you can find further heuristic to process these faster on 
the GPU. 
DX12 does allow for us to balance further than we could do before.
Our State machine and sequencer authoring for this method can be further 
improved.



• 54:50, 00:50, 55:45
• We think our system was pretty good, we shared our implementation with 

Coalition team 
and they leveraged it in Gears of War 4, and now aspects of this tech are in 
Unreal.

• For those that have yet to implement a Geometry Caching pipeline in your 
engine 

I strongly urge you to look at these talks and papers. 

• The first talk we consider our granddaddy, that started it all for us.
Real-time Geometry caching for CryEngine by Axel Gneiting at Sigraph in 
2014. 
• In essence we are using the lessons learned in that Ryse Paper 
and with our lessons from our E3 Launch Trailer from 2015 to develop these 
optimizations.

• I also want to mention the work of Mario Palmero & Norman Shaar from 
their work at Tequila Works.

with How to Take Advantage of Textures in Vertex Shaders
They did work in completely unknown parallel that complements our work, 



proving it’s usefulness.



• 55:30, 03:30, 00:00
• That was a whirlwind for us, and we both hope you can leverage aspects of this 

talk in the future.

• Feel free to ask questions, now.
Or you can reach out Zabir and I via e-mail.

• And please we would greatly appreciate if you enjoyed this talk, 
That you fill out the survey so we can come back again.
Thank you


