
1



2



3



http://www.frostbite.com/2007/04/frostbite-rendering-architecture-and-real-time-
procedural-shading-texturing-techniques

4



More	diverse	games
Not	just	Battlefield	engine
RPG,	Racing,	Sports,	Action

5



http://www.frostbite.com/2007/04/frostbite-rendering-architecture-and-real-time-
procedural-shading-texturing-techniques	slide	17

6



Not	meant	to	be	a	complete	/	representative	graph,	just	illustrating	the	scaling	
challenges.

Basically	the	same,	except	larger	number	of	systems	with	more	complicated	coupling.

Mostly	unchanged	since	2007
Until	recently!

Everything	scaled	up
More	features
Much	larger	community
Scaling	and	maintenance	challenges

Shading	system	described in	detail	by	Johan	in	2007.	

Rest of	this	talk	will	be	about	World	Renderer	and	rendering	features.

7



8



World	Renderer	architecture	is	the	focus	of	the	presentation	from	this	point.

9



This	is	the rendering	passes	we	had	in	Frostbite	few	years	ago	for	Battlefield	4.	Our	
pipeline	now	with	PBR	has	even	more	passes	and	complexity.

10



World	Renderer	state	as	it	evolved	from	2007	to	2016.

11



Major	World	Renderer	re-architecture in	2016	to	address	accumulated	technical	debt,	
improve	extensibility	and	maintainability.

Not	micro-management	of	explicit	passes	and	resources
Not	hacking	monolithic	functions	inside	engine	code
Not	baby-sitting	of	memory	allocation	and	aliasing.

12



13



14



15



Toy	example	of	a	frame	graph	that	implements	a	deferred	shading	pipeline.
The	graph	contains	render	passes	and	resources	as	nodes.	
Access	declarations	/	dependencies	are	edges.

16



Debug	graph	visualization	using	GraphViz.	Output	is	a	searchable PDF	(not	static	
image).
Graphs	can	be	surprisingly	large	and	complex.	
While	can	be	useful	in	some	cases,	it’s	definitely	not	the	primary	visualization	tool	
that	we	ended	up	using.

17



We	wrote	a	custom	visualization	script	(HTML+Javascript and	JSON	data	exported	
from	runtime).
JSON	data	contains	information	about	all	render	passes	and	resources.
For	each	render	pass	we	know	which	resources	were	created,	read	or	written.
For	each	resource	we	know	its	complete	memory	layout	and	various	metadata	
(debug	name,	size,	format,	etc.).
The	visualization	is	interactive	and	provides	a	much	more	useful	overview	of	what’s	
going	on	in	a	frame,	similar	to	what	you’d	find	in	PIX.

18



FrameGraph	is	a	step	away	from	immediate	mode	rendering	towards	retained.	
We	build	the	graph	every	frame	from	scratch,	since	rendering	configuration	may	
change	dynamically	based	on	player	actions,	cut-scenes,	etc.
The	big	assumption	is	that	setup	phase	is	relatively	cheap,	as	we’re	only	dealing	with	
a	relatively	small	number	of	render	passes	and	resources.

19



Flow	is	similar	to	IM	rendering,	but	we	are	not	generating	any	GPU	commands	during	
this	phase.	Just	building	up	the	information	about	rendering	operations	for	the	frame.
All	resources	are	virtual during	graph	building.	Render	pass	inputs	and	outputs	are	
declared	using	virtual	resource	handles.

20



Some	render	passes	may	have	effects	that	are	not	visible	to	FrameGraph	(for	example	
data	read-back	from	GPU).	Such	passes	are	explicitly	marked	as	having	side-effects.

Some	persistent	render	targets	are	still	required	(TAA,	SSR,	etc.).	They	can	be	
imported	into	FrameGraph.

Writing	to	imported	resource	counts	as	side-effect	of	a	render pass,	which	ensures	
that	it	is	not	culled	during	the	compilation	phase.

21



Simple	dummy	render	pass	that	produces	a	render	target	resource.
Very similar	to	creating	a	regular	texture,	except	we	also	specify	initial	resource	state	
(clear	or	discard/undefined)

22



Render	pass	that	reads	from	one	texture	and	writes	to	another.
Writing	to	a	texture	produces	a	renamed	handle.	This	allows	us	to	catch	errors	when	
resources	are	modified	in	undefined	order	(when	same	resource	is	written	by	
different	passes).
Renaming	resources	enforces	a	specific	execution	order	of	the	render	passes.

23



Abstract	/	virtualized	resources	allow	some	convenient	tricks.	Resources	may	be	
declared	early,	but	their	memory	will	be	allocated	only	on	first	use.	 An	example	use	
case	is	a	depth	buffer	resource.	We	know	that	we	will	need	one	to	do	3D	rendering,	
but	we	don’t	necessarily	know	(or	care)	if	our	rendering	pipeline	is	using	depth	pre-
pass. Depth	pre-pass,	gbuffer pass	and	forward-shaded	geometry	passes	all	simply	
write	to	the	resource	that	they	require	to	be	declared	early.
FrameGraph resource	handles	have	metadata	attached	to	them	that	can	be	queried	
during	setup	phase.	
This	allows	some	render	passes	to	create	derived	resources.	For	example,	a	generic	
down-sample	render	pass	can	create	an	output	resource	that	shares	all	properties	of	
the	input,	but	overrides	width/height. Resource	bind	flags	can	be	also	automatically	
computed	based	on	how	the	resource	is	used.	The	pass	that	creates	a	render	target	
resource	does	not	need	to	know	that	this	resource	is	going	to	be	used	as	a	UAV,	etc.
One	of	the	more	magical	operations	that	are	possible	on	virtualized	resources	is	
MoveSubresource.	Create	aliases	of	resources	that	will	be	created	by	the	future	
render	passes.

24



A	generic	rendering	pipeline	can	be	implemented	that	creates	an	output	texture,	
which	is	a	simple	2D	image	resource.
It	can	be	combined	with	a	reflection	probe	filtering	pipeline	that	takes	a	cubemap	
input.	
Move	operation	can	be	used	to	assign	”Lighting	buffer”	resource	to	one	of	the	
cubemap	faces.	
This	causes	the	deferred	shading	module	to	write	directly	to	the	cubemap	face,	
instead	of	creating	a	separate	render	target.
The	same	deferred	shading	module	can	be	used	in	a	different	context,	without	move	
operation.	In	this	case	FrameGraph	will	allocate	a	transient	render	target	for	the	
output.

25



FrameGraph	data	structures

Flat	array	of	used	resource	handles	per	RenderPass
Flat	array	of	RenderPasses in	FrameGraph
Flat	array	of	resources	in	ResourceRegistry

Resource	handles	are	just	indices	into	this	array
Compilation	phase	linearly	walks	through	all	RenderPasses

Computes	reference	counts	for	resources
Computes	first	and	last	users	for	resources
Computes	async	wait	points	and	resource	barriers

RenderPass execution	order	is	defined	by	setup	order
No	re-ordering	during	compilation

Culling	algorithm

Simple	graph	flood-fill	from	unreferenced	resources.

Compute	initial	resource	and	pass	reference	counts

26



renderPass.refCount++	for	every	resource	write
resource.refCount++	for	every	resource	read

Identify	resources	with	refCount ==	0	and	push	them	on	a	stack
While	stack	is	non-empty

Pop	a	resource	and	decrement	ref	count	of	its	producer
If	producer.refCount ==	0,	decrement	ref	counts	of	resources	that	it	
reads

Add	them	to	the	stack	when	their	refCount ==	0

26



It	is	sometimes	convenient	to	add	render	passes	and	resources	to	the	graph	without	
checking	if	they	are	needed	first.	
For	example,	we	can	always	add	certain	debug	visualizations	or	specialized	passes,	
such	as	depth	buffer	linearization.
This	cuts	down	on	the	rendering	pipeline	configuration	complexity	a	bit.

27



The	engine	contains	many	features	and	deciding	whether	to	execute	a	certain	render	
pass	can	be	a	chore.	It	also	introduces	some	coupling	between	passes.

Lighting	passes	don't	need	to	know	anything	about	the	debug	output.	When	debug	is	
enabled,	it	overrides	the	lighting	output,	which	will	cull	it.	This leads	to	more	
decoupled	/	modular	code.

28



Execution	phase	is	quite	simple.	Iterate	over	render	passes	that	are	not	culled	and	
call	their	execution	callback function.
This	phase	is	almost	identical	to	how	rendering	was	done	before	FrameGraph.	Just	
use	RenderContext API,	except	must	de-virtualize	FrameGraph	resources	first.

29



Efficient	async	compute	requires	some	hand-holding	today.	While	we	do	have	all	the	
render	pass	and	resource	dependencies	in	the	graph,	we	don’t	know	what	
bottlenecks	will	exist	on	the	GPU	during	execution.	Don’t	want	bandwidth-heavy	
compute	passes	to	run	with	bandwidth-heavy	graphics	work	(shouldn’t	be	news	to	
anyone).

Async	operations	will	increase	memory	water	mark,	because	resource	lifetimes	are	
extended	(more	resources	are	alive	simultaneously).	Need	to	be	a	bit	careful.

Ended	up	with	a	manual	opt-in	mechanism	for	render	passes.	Async	passes	are	kicked	
off	on	the	main	timeline	at	the	point	where	they’d	execute	serially	(we	don’t	re-order	
passes).	
Synchronization	point	is	automatically	added	on	the	main	pipeline	before	the	first	
render	pass	that	consumes	the	output	of	async	pass.

30



Example	compute-based	AO	filtering	pipeline.

31



AO	buffer	generation	and	filtering	can	be	moved	to	async	queue,	but	resource	
lifetimes	must	be	extended	a	bit	(up	to	the	sync	point).

32



This	is	all	you	have	to	do	in	high-level	code.	Super	simple	to	answer	questions	like	
“what	would	happen	if	we	ran	this	async?”.

In	the	future	we’d	like	to	explore	automatic	render	pass	re-ordering,	perhaps	with	
profile-guided	optimization	step.

33



Programmer	convenience	is	very	important.	Don’t	want	to	introduce	too	much	
boilerplate	code	or	break	the	code	flow.
Started	with	a	C++	class	with	virtual	execute(),	but	quickly	realized	that	such	approach	
requires	moving	quite	a	lot	of	code	around.	
It	also	requires	a	bit	of	plumbing	to	pass	data	between	setup	and	execution	phases.

Implemented	a	lambda-based	API	to	improve	the	convenience.	This	also	greatly	
simplified	the	effort	of	porting	legacy	rendering	code	to	the	new	system.
Started	by	simply	wrapping	huge	chunks	of	code	in	lambdas.	Gradually	replaced	raw	
resources	with	transients	and	sub-divided	monolithic	lambdas	into	smaller	ones.
Eventually	moved	out	final	small	code	blocks	into	stand-alone	functions.	Spaghetti	is	
mostly	untangled	J

The	price	that	we	have	to	pay	is	a template-heavy	FrameGraph setup API.

34



addCallbackPass()	is	a	template	function	that	creates	a	render	pass	class	behind	the	
scenes	that’s	parametarized by	the	PassData and	the	execution	lambda.	

Setup	lambda	is	inlined in	addMyPass(),	but	execute	lambda	is	deferred.	Setup	
lambda	may	capture	everything	by	reference,	but	execute	must	capture	by	value.	
Capturing	data	by	value	is	a	little	bit	dangerous	since	it’s	possible	to	accidentally	
capture a	pointer	that’s	released	before	execution	phase.	It’s	also	possible	to	
accidentally	capture	huge	structures	by	value.	Luckily,	we	can	enforce	that	the	size	of	
execution	lambda	is	below	a	certain	size	at	compile	time	(we	settled	on	1KB	limit).

35



36



Not	necessarily	need	a	single	global	blackboard.	Modules	may	create	their	own	
blackboard	within	their	setup	scope,	propagate	some	data	from	the	parent	into	it	and	
then	copy	results	into	parent	blackboard	at	the	end.

While	blackboard	is	great	for	decoupling,	it	does	make	the	code	harder	to	
understand.	If	a	module	takes	a	blackboard	as	a	parameter,	it’s	not	possible	to	tell	at	
the	call	site	which	resources	will	actually	be	accessed.
The	module	code	itself	must	be	viewed	to	answer	this.

Invalid	blackboard	access	can	only	be	validated	at	run-time.	

On	balance,	we	believe	that	the	benefits	outweigh	the	drawbacks.

37



The	back-bone	of	FrameGraph.

38



39



40



Reserve	a	single	large	virtual	memory	pool
Allocate	texture	virtual	memory	block	on	first	use

Use	a	general	purpose	non-local	memory	allocator
Patch	or	allocate	GNM	resource	descriptors	as	needed	

Return	virtual	memory	block	after	last	use
Commit	physical	memory	to	cover	VA	range	used	in	current	frame

Grow	the	physical	memory	pool	on	demand
Shrink	down	to	the	high	water	mark	of	last	N	frames

Resources	overlap	in	virtual	address	space
Understood	natively	by	PS4	graphics	debugging	tools	(Razor)

41



A	bit	similar	to	PS4,	except	many	disjoint	address	ranges	instead	of	just	one.
Can’t	use	a	single	range,	as	it’s	impossible	to	shrink	it	without	stalling	the	GPU	or	
temporarily	increasing	memory	usage.
Despite	these	shortcomings,	we’re	still	able	to	re-use	memory	sometimes	and	see	a	
significant	overall	water	mark	reduction.

Frostbite	does	not	currently	perform	global	memory	allocation	optimization,	but	it	
could	theoretically	be	implemented.	A	global	optimization	pass	would	allow	merging	
Heap	2	into	Heap	6.	This	would	bring	down	the	overall	number	of	heaps	and	the	
memory	water	mark.

---

Concrete	problems	with	resource	heaps	in	current	D3D12:	

Tier	1	heaps	have	restrictions	on	types	of	resources	that	can	be	placed	in	them.	Only	
buffers	or only	textures	or only	render	targets	and	depth	buffers.	Must	create	
separate	heaps	for	different	resource	types.	Most	transient	resources	that	we	alias	
are	RT	or	DS,	so	it’s	not	too	bad.	We	force	the	RT	flag	on	a	transient	texture	even	if	

42



user	did	not	specifically	request	it.

Tier	2	heaps	are	better,	as	all	types	of	resources	can	be	aliased.	They	are	still	not	
ideal,	as	we	must	allocate	many	heaps	and	sub-allocate	within	them.	This	leads	to	
more	fragmentation	compared	to	allocating	from	a	single	large	address	range.	We	
can’t	allocate	a	single	huge	heap,	as	we	can’t	shrink	it.	Compromise	is	to	create	one	
large-ish persistent	transient	resource	heap	and	then	create	smaller	overflow heaps.

Once	a	resource	is	created,	it	can’t	be	moved.	This	means	that	if	memory	allocation	
“schedule”	changes	a	bit,	some	objects	will	change	their	placements	and	will	have	to	
be	re-created.	It’s	possible	to	work	around	this	issue	to	some	degree	by	caching	
placed	D3D	objects	(resources	and	various	views)	and	re-using	them	when	possible	
(potentially	many	frames	later,	when	allocation	schedule	changes	again	to	a	
compatible	one).	Resource	allocation	schedule	may	change	based	on	player	actions,	
cut-scenes,	UI,	etc.	However,	there	is	typically	only	a	handful	of	unique	schedules,	so	
it’s	possible	to	use	an	LRU	cache.

These	problems	simply	don’t	exist	on	consoles.	Tiled	resources	could	be	quite	
convenient	in	the	future	(almost	the	same	level	of	efficiency	as	XB1	memory	aliasing),	
however	as	of	October	2016	there	are	significant	CPU	and	GPU	overheads	to	using	
them	as	RTVs	/	DSVs. Additionally,	resource	heap	tier	restrictions	prevent	efficient	tile	
mapping	updates	via	CopyTileMappings.	We	sometimes	want	to	use	multiple	heaps	
as	page	sources	to	back	a	single	resource.	Current	UpdateTileMappings API	can	only	
take	a	single	heap	pointer,	therefore	multiple	API	calls	are	required.

42



Fragmentation-free dynamic	memory	allocation	and	aliasing
Close	to	optimal	ESRAM	utilization	automatically

Don’t	need	contiguous	memory	blocks
Resources	may	be	fully	or	partially	in	ESRAM
Overflow	to	DRAM	when	every	ESRAM	page	is	in	use

Hand-tune	memory	allocation	based	on	profiling
Deny	ESRAM	for	some	resources
Allocate	ESRAM	top-down	or	bottom-up
Restrict	ESRAM	to	%	of	the	resource,	place	rest	in	DRAM

43



Use	a	physical	memory pool	of	ESRAM	and	DRAM	pages
Allocate	all	resources	at	unique	virtual	addresses

VirtualAlloc,	CreatePlacedResourceX
Allocate	physical	memory	pages	from	pool	on	first	use

ESRAM	pages	first,	overflow	to	DRAM
Extend	DRAM	pool	on	demand
Shrink	DRAM	pool	based	on	high	water	mark	of	last	N	frames

Return	physical	pages	to	the	pool	after	last	use
Update	GPU	page	table	before	executing	other	commands

XB1-specific	ID3D12CommandQueue API
Conceptually	similar	to	CopyTileMappings
Page	table	update	happens	on	GPU	timeline

44



45



46



47



Since	different	rendering	passes	may	use	the	same	physical	memory, we	need	to	add	
synchronization	point	between	them	to	make	sure	that	they	don’t	run	in	parallel	and	
overwrite	each	others	memory.
We	do	this	by	using	aliasing	barriers,	which	will	add	the	necessary	pipeline	and	cache	
flushes.

48



Graphics	and	compute	passes	don’t	overlap	logically,	but	run	in	parallel	because	they	
are	independent	(they	don’t	have	any	producer-consumer relationship	or	any	shared	
logical	resources).

49



Using	explicit	async compute	allows	us	to	ensure	that	resource	memory	isn’t	released	
until	compute	chain	is	done.

In	this	particular	example,	overlapped	and	non-overlapped	versions	have	exactly	the	
same	performance	characteristics.	Overlap	does	not	always improve	perf.	In	fact,	it	
may	sometimes	hurt	it.

50



51



52



53



54



55



56



57



…	now	we	finally	have	space	for	those	16k^2	eyeball	textures!

58



59



Full	frame	knowledge	and	visualization is	an awesome	tool	that	allowed	us	to	spot	
inefficiencies	in	resource	allocation,	possibilities	for	async	compute,	etc.	

60



We’re	only	starting	to	scratch	the surface	of	what’s	possible	with	the	modern	
rendering	engine	architecture	and	APIs.	We	expect	to	see	more	engines	in	the	future	
moving	to	a	similar	design	(high-level	frame	setup),	since	that	appears	to	be	the	most	
optimal	way	to	drive	DX12	and	Vulkan style	renderers.

61



62



The	End

63


