
Game design tools
For when spreadsheets and flowcharts
aren’t enough

Katharine Neil
Independent developer

What are game design tools?
Game design tools help you solve design problems without
having to build playable experiences in order to test out your
ideas.

● Conceptual models, notation systems, software tools

● We generally don’t use them!

● We’ve been working on this problem for a while…
(See “Formal Abstract Design Tools”, Doug Church, Game
Developer Magazine, 1999)

● Main goal: support thinking
● Support ambiguous, evolving

ideas
● Unresolved conflicts and issues

are expected
● Messy, visual
● Support an anarchic, even

private process (like a
designer’s notebook)

● “But how does this help us build
the game?” <– wrong question

● Main goal: support production

● Create usable, bug free assets

● Technical mistakes and logical
errors break things

● Clean, optimal, efficient

● Easy to measure and
demonstrate progress and
outcomes

● Make sense to programmers
and producers

Design tools Production tools

Tools we typically use for game design

● Documenting
● GDDs, spreadsheets, flowcharts, diagrams

● Prototyping and iterative development

● Player metrics

What design tools can help with

● System design and balancing

● Narrative design

● Progression design

● Level and mission design

● Design for procedural content generation

Game design tools you can use now

Machinations

● Notation system for modelling
game systems

● Models game economies as
resource flows

● Provides interactive simulation
of game dynamics

Prototype

Machinations
model

Machinations is useful for:
● Modelling, balancing systems – especially for games with emergent dynamics

● Quickly sketching out ideas

● Analysing, learning from other games

Limitations:
● Not suited to data-heavy, scripted gameplay

● Can’t factor in « game feel » or topography

Where to get it:
● http://www.jorisdormans.nl/machinations/

Book: “Game Mechanics: Advanced Design”, Adams & Dormans

Articy:Draft

● Narrative design and mission
design

● Flow diagram-style interface
supports branching, graph-
based, nested structures

● Also serves as an authoring tool

Articy:Draft is useful for…
● Writers who want a tool like Scrivener – but for games

● Organising and visualising design and narrative materials

● Narrative-based, dialog-heavy games

Limitations
Heavily tailored towards RPGs, adventure games

Where to get it
http://www.nevigo.com

Skill atoms
● A diagramming system

● A skill atom describes how the
player gains a new skill

● A skill chain describes the
evolution of the player’s skill
set

● Progression design using the
lens of player skills

Skill atoms are useful for…
● Focusing on player experience

● Onboarding/scaffolding

Limitations
● Skill chain graphs can become large, hard to read/use

Where to get it
● Read the article here:

http://www.gamasutra.com/view/feature/129948/the_chemistry_of_ga
me_design.php

Game design tools of the future:

“Mixed initiative” (procedural
content generation and AI-
assisted) design tools

The Sentient Sketchbook
● AI-assisted top-down sketching of

game levels – particularly strategy
game maps

● Place bases, resources, rough collision
scene, goals

● Evaluates maps for player balance
and gameplay pacing

● Shows navigable paths, choke points

● Fleshes out details and suggests
alternative designs while you sketch

The Sentient Sketchbook is useful for…

● The grey-boxing stage of level design

● Strategy games, FPS

Limitations

● Quite genre-specific

● Preset map sizes

● High level, approximate

Where to get it

http://www.sentientsketchbook.com/

● AI-assisted mission and level
design

● Design-time procedural
generation with designer-
friendly approach

● Can transform abstract mission
structures into level designs

Ludoscope

Ludoscope is useful for:
● Generating or fleshing out level designs

● Devising procedural level generation rules without scripting/code

● Freaky new ways to think about your level design process

Limitations
● Requires hard work in abstract thinking

● Can be challenging to figure out what to use it for

● Highly experimental and still in development

Where to get it
Ask Joris Dormans about beta testing: jd@jorisdormans.nl

PCG-based level editor for the game Refraction

● Mixed-initiative design of puzzle game levels

● Computer-aided progression design

● Helps the designer (and the procedural
generation) stick to the progression rules and
structure they’ve defined

Refraction’s level editor is useful as:
● Proof of concept of how we can embed computational assistance

into level editing/world building tools

Limitations
• You can’t use it - it’s specifically for building Refraction game levels

• Built to handle design for a linear game with a small feature set

Where to read about it
https://adamsmith.as/papers/uist2013_progression.pdf

Let’s make design tools!

Progressimo
● Standalone progression

design environment
inspired by the Refraction
tool

● Branching and open-world
progression structures

● Calculates game state,
mission unlocking

● (Disclosure: I made this
tool!)

Progressimo is useful for:
● Progression-heavy games e.g. levels and missions, game-as-a-service,

adventure games, action RPGs, open world games

● Visualising and walking through missions and how they fit together in
the game

● High-level content planning for procedural generation

Limitations
● Not suitable for games where progression is driven primarily by

emergent system dynamics

Where to get it
● Contact me about joining the beta: katharine.neil@gmail.com

Benefits of using game design tools

● Adds structure to a design process and makes
design visible

● Can provide a safe space in which to attempt
ambitious, complex designs

● Lessens design’s reliance on production

● Learn new ways of thinking that impact the way you
design even when you’re not using tools

Limitations and pitfalls

● Can take a while to learn and be hard to use

● Hard to tell what fun looks like in abstract form

● Not great for modelling game feel and interaction

● A tool acts like a filter on your ideas. It has its own agenda!

● False positives, false negatives (fun in the tool but not in the

game & vice versa)

Suggested approaches

Use a “toolbox” approach
● Have a range of tools to hand (no “one tool to rule them all”)

Use game design tools to complement
other methods
● For example, alongside prototyping (to tell you things a

prototype can’t tell you)

Example: Dan Cook’s design workflow

Prototype

Concept

development

Machinations

Playtest

Identify problems Analyse

problems

Machinations

Skill

atoms

Skill

atoms

Fix problems

Ideation

Example: Design workflow for platformer/RPG Wanderer

Articy:Draft

Articy:Draft

Game build

Data

Gameplay logic

(Lua scripts)

• Branching dialogue

• Interactions

• Quest structures

• Skill trees

• Item & character attributes

Concept & narrative

development

Production

• Storyboarding

• Quest ideas

Example: Workflow for my top-down shooter

LudoscopeProgressimo

Level grammar

Level design

patterns & ideas

Prototyping and

hands-on level

design Procedurally-generated level design ideas

Thanks for listening!

katharine.neil@gmail.com

@haikus_by_KN

