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What are game design tools?
Game design tools help you solve design problems without 
having to build playable experiences in order to test out your 
ideas.

● Conceptual models, notation systems, software tools

● We generally don’t use them!

● We’ve been working on this problem for a while…
(See “Formal Abstract Design Tools”, Doug Church, Game 
Developer Magazine, 1999)



● Main goal: support thinking
● Support ambiguous, evolving 

ideas
● Unresolved conflicts and issues 

are expected
● Messy, visual
● Support an anarchic, even 

private process (like a 
designer’s notebook)

● “But how does this help us build 
the game?” <– wrong question

● Main goal: support production

● Create usable, bug free assets

● Technical mistakes and logical 
errors break things

● Clean, optimal, efficient

● Easy to measure and 
demonstrate progress and 
outcomes

● Make sense to programmers 
and producers

Design tools Production tools



Tools we typically use for game design

● Documenting
● GDDs, spreadsheets, flowcharts, diagrams

● Prototyping and iterative development

● Player metrics



What design tools can help with

● System design and balancing

● Narrative design

● Progression design

● Level and mission design

● Design for procedural content generation



Game design tools you can use now



Machinations

● Notation system for modelling 
game systems

● Models game economies as 
resource flows

● Provides interactive simulation 
of game dynamics



Prototype

Machinations 
model



Machinations is useful for:
● Modelling, balancing systems – especially for games with emergent dynamics

● Quickly sketching out ideas

● Analysing, learning from other games

Limitations:
● Not suited to data-heavy, scripted gameplay

● Can’t factor in « game feel » or topography

Where to get it:
● http://www.jorisdormans.nl/machinations/  

Book: “Game Mechanics: Advanced Design”, Adams & Dormans



Articy:Draft

● Narrative design and mission 
design

● Flow diagram-style interface 
supports branching, graph-
based, nested structures

● Also serves as an authoring tool



Articy:Draft is useful for…
● Writers who want a tool like Scrivener – but for games

● Organising and visualising design and narrative materials

● Narrative-based, dialog-heavy games

Limitations
Heavily tailored towards RPGs, adventure games

Where to get it
http://www.nevigo.com



Skill atoms
● A diagramming system

● A skill atom describes how the 
player gains a new skill

● A skill chain describes the 
evolution of the player’s skill 
set

● Progression design using the 
lens of player skills



Skill atoms are useful for…
● Focusing on player experience

● Onboarding/scaffolding

Limitations
● Skill chain graphs can become large, hard to read/use

Where to get it
● Read the article here: 

http://www.gamasutra.com/view/feature/129948/the_chemistry_of_ga
me_design.php



Game design tools of the future:

“Mixed initiative” (procedural 
content generation and AI-
assisted) design tools



The Sentient Sketchbook
● AI-assisted top-down sketching of 

game levels – particularly strategy 
game maps

● Place bases, resources, rough collision 
scene, goals

● Evaluates maps for player balance 
and gameplay pacing

● Shows navigable paths, choke points

● Fleshes out details and suggests 
alternative designs while you sketch



The Sentient Sketchbook is useful for…

● The grey-boxing stage of level design

● Strategy games, FPS

Limitations

● Quite genre-specific

● Preset map sizes

● High level, approximate

Where to get it

http://www.sentientsketchbook.com/



● AI-assisted mission and level 
design

● Design-time procedural
generation with designer-
friendly approach

● Can transform abstract mission 
structures into level designs

Ludoscope



Ludoscope is useful for:
● Generating or fleshing out level designs

● Devising procedural level generation rules without scripting/code

● Freaky new ways to think about your level design process

Limitations
● Requires hard work in abstract thinking

● Can be challenging to figure out what to use it for

● Highly experimental and still in development

Where to get it
Ask Joris Dormans about beta testing: jd@jorisdormans.nl



PCG-based level editor for the game Refraction

● Mixed-initiative design of puzzle game levels

● Computer-aided progression design 

● Helps the designer (and the procedural 
generation) stick to the progression rules and 
structure they’ve defined



Refraction’s level editor is useful as:
● Proof of concept of how we can embed computational assistance 

into level editing/world building tools

Limitations
• You can’t use it - it’s specifically for building Refraction game levels

• Built to handle design for a linear game with a small feature set 

Where to read about it
https://adamsmith.as/papers/uist2013_progression.pdf



Let’s make design tools!



Progressimo
● Standalone progression 

design environment 
inspired by the Refraction
tool

● Branching and open-world 
progression structures

● Calculates game state, 
mission unlocking

● (Disclosure: I made this 
tool!)



Progressimo is useful for:
● Progression-heavy games e.g. levels and missions, game-as-a-service, 

adventure games, action RPGs, open world games

● Visualising and walking through missions and how they fit together in 
the game 

● High-level content planning for procedural generation

Limitations
● Not suitable for games where progression is driven primarily by 

emergent system dynamics

Where to get it
● Contact me about joining the beta: katharine.neil@gmail.com



Benefits of using game design tools

● Adds structure to a design process and makes 
design visible

● Can provide a safe space in which to attempt 
ambitious, complex designs

● Lessens design’s reliance on production

● Learn new ways of thinking that impact the way you 
design even when you’re not using tools



Limitations and pitfalls

● Can take a while to learn and be hard to use

● Hard to tell what fun looks like in abstract form

● Not great for modelling game feel and interaction

● A tool acts like a filter on your ideas. It has its own agenda!

● False positives, false negatives (fun in the tool but not in the 

game & vice versa)



Suggested approaches

Use a “toolbox” approach
● Have a range of tools to hand (no “one tool to rule them all”)

Use game design tools to complement 
other methods
● For example, alongside prototyping (to tell you things a 

prototype can’t tell you)



Example: Dan Cook’s design workflow 

Prototype

Concept 

development

Machinations

Playtest

Identify problems Analyse 

problems

Machinations

Skill 

atoms

Skill 

atoms

Fix problems

Ideation



Example: Design workflow for platformer/RPG Wanderer

Articy:Draft

Articy:Draft

Game build

Data

Gameplay logic

(Lua scripts)

• Branching dialogue

• Interactions

• Quest structures

• Skill trees

• Item & character attributes

Concept & narrative 

development

Production

• Storyboarding

• Quest ideas



Example: Workflow for my top-down shooter

LudoscopeProgressimo

Level grammar

Level design 

patterns & ideas

Prototyping and 

hands-on level 

design Procedurally-generated level design ideas



Thanks for listening!

katharine.neil@gmail.com

@haikus_by_KN


