
AI ARBORIST:
PROPER CULTIVATION AND CARE FOR YOUR BEHAVIOR TREES

Mika Vehkala – Lead AI Programmer – Remedy Entertainment

Bobby Anguelov – Lead Animation Programmer – WB Games Montreal

Ben Weber – Data Science Manager - Twitch

MIKA VEHKALA
REMEDY ENTERTAINMENT

Overview

1. Database / Blackboard

2. Decorators

3. Splitting trees

4. BTs for coordination

SOME CHALLENGE AREAS

• Generalization and granularity of tasks

• How to create library of re-usable building blocks

• How about interruptions / transitions

DATABASE FOR BT

• Have simple, uniform and compact database (blackboard)

• Conditions are easier to implement

• Debugging is easier

• Performs better

• For example, list of dictionaries

• One dictionary per tracked entity

• Reference with paths ”Self.PrimaryTarget.Visible”

Sensors

Database

BT

Self
PrimaryTarget = Enemy_01

Enemy_01
Visible = true

BEHAVIORTREE NODES AND DECORATORS

• Root

• Control flow nodes

• Selector

• Sequence

• Parallel

• Execution nodes

Selector

Root

Task Sequence

Task Task

DECORATOR NODES

Sequence

Task

Condition

Abort Condition

• Common types

• Control activation / deactivation

• Modify termination status

• Add-on functionality

Always Succeed SetPropertyOnFail

Task

NODE DECORATORS

• Node decorators vs decorator nodes

• Unreal 4 BT’s (Mieszko Zielinski) does this

• Compact

• More options to simplify nodes

• Common types

• Control activation / deactivation

• Modify termination status

• Parallel execution

• Add-on functionality

Sequence

Abort Condition
PrimaryTarget.Visible is true

Condition
PrimaryTarget to Self > 15m

Task Task

Always Succeed OnTerminateSetProperty
If failed Self.Cooldown = 10s

Target Scanner

NODE DECORATORS VS DECORATOR NODES

Sequence

Task

Condition

Abort Condition

Always Succeed SetPropertyOnFail

Task

Sequence

Abort Condition
PrimaryTarget.Visible is true

Condition
PrimaryTarget to Self > 15m

Task Task

Always Succeed OnTerminateSetProperty
If failed Self.Cooldown = 10s

Target Scanner

EXAMPLE: RETRY

• OnTerminationSetProperty

• When node completes with specified result set
property

• TimeSinceCondition

• Check delta to timestamp property value

• Loop

• Selector to monitor higher priority branches

Selector
MonitorHigherPriority

PressButton PlayAnimation
ScratchHead.fbx

Loop
OnTerminateSetProperty

If failed Self.LastTry = now

TimeSinceCondition
Self.LastTry > 10s

EXAMPLE: LOOKAT

• Two types of parallel execution

• Updateable decorator

• Parallel node with two children

Parallel

ScanPointOfInterest
Self.PrimaryPOI

LookAt
Self.PrimaryPOI

MoveTo
Self.NextWaypoint

EXAMPLE: DEBUGGING

• Tag decorators

• Can query for active tags

• Message decorators

• Conditional

• Breakpoint decorators

• Conditional

• Actions

• Pause

• Break in code

• Zoom to NPC

Selector

Reference
combat.aibt

Condition
If Self.PrimaryTarget is set

Reference
patrol.aibt

ChildTree
PatrolOverride

Tag
InCombat

Tag
InPatrol

Breakpoint
Self.DebugEnabled == true

Pause, Zoom to actor

Jump To Safety

INTERRUPTIONS

Sequence

Condition
Distance to Grenade < 5m

Heroic Super Slow
Vault To Cover

Selector

Awesome Cover
Fighting

• Task being interrupted may do cleanup, but
terminates immediately

• New task starting may have to wait until it can
perform all of its logic

• Can also use decorator to restrict tree update but
this should be used carefully

Uninterruptable

SPLITTING TREES

• Reference nodes

• Design time

• Merged during export or load

• Child-tree nodes

• Runtime

• Allows for level specific changes

Selector

Reference
combat.aibt

Condition
If Self.PrimaryTarget is set

Reference
patrol.aibt

ChildTree
PatrolOverride

CHILD TREE USE-CASES

• Smart objects

• Embed tree, instructions how to use

• Can embed also data

• Items and Weapons

• Combat tree in weapons

• Level scripting

• Create custom tree and override at highest level

• Spawning, do cool entrance, can have different options based on situation

EXAMPLE: SMART OBJECTS

Root

Sequence

PlayAnimation
SitInChair.fbx

PlayAnimation
DrinkCoffee.fbx

PlayAnimation
StandUp.fbx

EXAMPLE: SMART OBJECTS

• Cooldown used to block re-use immediately

• Exposing detach as decorator

ChildTree
SmartObject

OnTerminateSetProperty
Self.LastSmartObjectUse = now

TimeSinceCondition
Self.LastSmartObjectUse > 30s

OnTerminateDetach
SmartObject

COORDINATOR

• BT assigned into a volume

• Custom BT nodes and decorators

• Update goals / objectives

• Update influence maps

• Assign roles

• Write to individual NPC memory

• Share data accessible by NPCs

WRAPUP

• Node decorators are great

• Don’t be limited to a single static tree

• BTs are not character specific

• Also, not your only mechanism to control characters

Read more

• AIGameDev.com

https://aigamedev.com/insider/presentations/behavior-trees/

• Unreal 4 Behavior Trees

https://docs.unrealengine.com/latest/INT/Engine/AI/BehaviorTrees/HowUE4BehaviorTreesDiffer/index.html

• AngryAnt’s Behave

http://eej.dk/community/documentation/behave/

https://aigamedev.com/insider/presentations/behavior-trees/
https://docs.unrealengine.com/latest/INT/Engine/AI/BehaviorTrees/HowUE4BehaviorTreesDiffer/index.html
http://eej.dk/community/documentation/behave/

BOBBY ANGUELOV
WB GAMES, MONTREAL

Overview

1. Common Pitfalls

2. Best Practices

3. Authoring Guidelines

BEST PRACTICES

• This is a best practices talk on Behavior Trees

• We’re gonna discuss some problems

• We’re also going to discuss some solutions

REINVENTING THE WHEEL

• Nothing I’m gonna mention is Revolutionary

• Going to provide some observations and suggestions

• Both Dave Mark and Alex Champandard have touched on these in the past

• Hoping to prevent some pain and kick off some interesting discussions

MY PERSPECTIVE

• My approach to engineering is that there are no Silver Bullets

• Every technique/approach/methodology has pros and cons

MY PERSPECTIVE

• We often lose perspective and brute force our solutions

• It’s our job as developers to understand our tools

• Leverage their strengths

• Avoid their pitfalls

MY PERSPECTIVE

• We’re often so busy that we miss the obvious

• Good tools = Better workflows = More iterations = Better result

BEHAVIOR TREE VISUALIZATION

• I tend to think of, and visualize, behavior trees in a different way

Priority

Sequence Order

Priority

Sequence Order

Tree
Root

Priority
2

Priority
1

Priority
0

Priority
3

Action
0

Action
1

Action
2

Action
0

Action
1

Action
2

Action
0

Action
1

Seq

Seq Seq

Priority
2

Priority
1

Priority
0

Tree
Root

Priority
3

Action
0

Action
1

Action
2

Action
0

Action
1

Action
2

Action
0

Action
1

Note: Sequences are built-in/implied

BEHAVIOR REACTIVITY AND PRIORITY

• Behavior Trees are inherently bad at two things

• Transitions/Interruptions

• Behavior Prioritization

HOW TRANSITIONS OCCUR

Idle Relaxed

Investigating

Fighting

Panicking
Tree
Root

Idle Alerted

M

M

M

M

Event Driven Behavior Trees

• Event driven behavior trees feature event monitor nodes which are
evaluated with each BT update.

• The deeper that we are in the tree, the more monitors we need to
update on subsequent updates.

HOW TRANSITIONS OCCUR

Idle Relaxed

Investigating

Fighting

Panicking
Tree
Root

Idle Alerted

M

M

M

M

Event Driven Behavior Trees

• Event driven behavior trees feature event monitor nodes which are
evaluated with each BT update.

• The deeper that we are in the tree, the more monitors we need to
update on subsequent updates.

• When an event monitor triggers, it will cause the tree to transition
into a branch

M

TRANSITIONS PROBLEMS

Idle Relaxed

Investigating

Fighting

Panicking
Tree
Root

Idle Alerted

M
Problem: Static prioritization

• Only way to transitioning from higher to lower priorities is by
aborting or completing current behavior

• To abort we usually need to sprinkle special case conditions for
each lower behavior higher up in the tree

• We end up polluting higher priority behaviors with knowledge of
lower priority ones
• End up increasing complexity of the tree

• We often also need to change priorities based on the context of the
current situation

QUESTION TIME

Let me ask you a question!

QUESTION TIME

Do you understand this AI design?

Charge Attack 0

Super Attack

Attack Pattern 0

Attack Pattern 1

Charge Attack 1

Attack Pattern 2

QUESTION TIME

Do you understand this AI design?

How about now?

Tree
Root

Charge Attack 1

Super Attack

Attack Pattern 0

Attack Pattern 1

Charge Attack 0

Attack Pattern 2

BEHAVIOR PRIORITIZATION

• Behavior Trees are directed ACYCLIC graphs

• High Level AI decision making is usually cyclic and contextual

• We are trying to model cyclic behavior with an acyclic data structure
• It can be done!

• Doesn’t mean you should!

Charge Attack 0

Super Attack

Attack Pattern 0

Attack Pattern 2 Attack Pattern 1

Charge Attack 1

Tree
Root

Charge Attack 1

Super Attack

Attack Pattern 0

Attack Pattern 1

Charge Attack 0

Attack Pattern 2

VS.

MODELLING CYCLIC BEHAVIOR

• With the correct set of pre-conditions, we can get the required result
• E.g. “Did I just execute Attack Pattern 1?”

• Requires us to track previous states in agent knowledge/blackboard
• E.g. LastState = “Attack Pattern 1”

• Pollutes agent knowledge with execution flow data

• Increases complexity which hurts robustness and performance

Tree
Root

Charge Attack 1

Super Attack

Attack Pattern 0

Attack Pattern 1

Charge Attack 0

Attack Pattern 2

MODELLING CYCLIC BEHAVIOR

Tree
Root

Charge Attack 1

Super Attack

Attack Pattern 0

Attack Pattern 1

Charge Attack 0

Attack Pattern 2

• We are creating IMPLICIT transitions and dependencies between the sub-trees and agent
data

My new preferred metric for code/systems quality is:
“How easy is it to delete that code/data?”

• How easy is it to delete a behavior?
• Probably gonna have to touch half the tree and potentially agent data as well

THE COMMON SOLUTIONS

In my experience most solutions end up like this:

TRANSITION BEHAVIORS

• Another issue is that we often need to visually signal large behavior state changes.

• E.g. Startled reaction to take us from idle to investigating

• Simplest case, we can just play an animation + a sound

• Sometimes we need to execute a whole transition behavior

• E.g. Turn to face event + change stance + draw weapon + play specific anim, etc…

• These reactions and behaviors are placed into the tree at various points

TRANSITION BEHAVIORS

Panicking
Tree
Root

Transition From Fighting

Transition From Investigating

Transition From Idle Alert

Fighting

Transition From Investigating

Transition From Idle Alert

Transition From Idle Relaxed

Investigating

Transition From Fighting

Transition From Idle Alert

Transition From Idle Relaxed

ETC…

Transition From Fighting

WAIT, WHAT?

“Okay… so what you’re saying is behaviors trees are AWFUL and we shouldn’t use them?!”

BEHAVIOR TREES AT THEIR BEST

• A behavior tree is a mathematical model of plan execution (Wikipedia)

Plan
Execution

Model

• Implies that a plan already exists!

• BTs are excellent for describing a complex sequence of actions to perform

BEHAVIOR TREES AT THEIR BEST

Question: What does this behavior do?

Parallel
Has Good
Position

Is being aimed
at

Dodge

Has Line of
Sight

Find New
Position

Move

Has Bullets Fire Weapon

Reload
Weapon

Loop
(Cant Fail)

Loop
(Cant Fail)

Wait 3
Seconds

BEHAVIOR TREES AT THEIR BEST

• I like to think of behaviors tree as in between decision making and actuation

• For me, a BT is not a decision making tool

• It’s acts as control layer between high level decision making and low level
actuation/execution.

• We can still make some decisions in the trees but those decisions don’t change
the overall goal or agent intentions

• E.g. In prev example: if I don’t have LOS, find a position with LOS

Sensors

Decision Making

Actuation
(anim, sound,

locomotion, etc.)

Behavior
Trees

BEHAVIOR TREES AT THEIR BEST

• Requires a higher granularity of actions in behavior trees

• E.g. Move, look-at, reload, fire, etc.

• Simpler and smaller trees, each executing a single clear goal

• E.g. Fight from Cover, Investigate Sound

• We still make some decisions in the trees but only decisions needed for
executing that specific behavior

• Previous Example: “Check whether we have a good position”

Sensors

Decision Making

Actuation

Behavior
Trees

BEHAVIOR TREES AT THEIR BEST

Moving to a simpler execution-oriented approach has several benefits:

• Easy to build

• Easy to understand and debug

• Easy to identify the working data set for the tree

• Easy to test independently

• Perform better

BEHAVIOR TREES AT THEIR BEST

My Authoring Rule of Thumb
“I’ve made a decision, what are the steps I need to execute it”

WAIT, WHAT?

“Okay… So don’t use behavior trees for the decision making… Then what should I do?”

LEVERAGE OTHER TECHNIQUES

• In game AI, we are spoiled for choice when it comes to techniques:

• State Machines

• Planners

• Utility systems

• Etc…

THAT DOESN’T MEAN YOU ONLY HAVE TO CHOOSE ONE!

EXAMPLE TIME

What I’ve found to be an elegant approach to agent AI is the following:

A Hierarchical Finite State Machine Behavior Tree Hybrid

(HFSMBTH for short)

STATE MACHINE / BT HYBRID

• State machines are excellent for describing states and transitions

• Easy to visualize, author and understand

• Bad for defining sequence of actions

• Behavior trees are excellent for describing sequences of actions

• Allow for parallel execution of actions

• Bad for defining transitions and reactions

• Both techniques are proven and well understood

• Low risk / high reward

STATE MACHINE / BT HYBRID

Both techniques have problems…

Together, they are more than the sum of their parts

EXAMPLE OF THE MYTHICAL HFSMBTH

Combat

Investigate

Idle

Patrol

Relaxed
Patrol

Alerted
Patrol

Relaxed
Idle

Alerted
Idle

Investigate Last
Known Position

Investigate
Noise

Stand and
Fight

Fight From
Cover

Flanking
Advance

EXAMPLE OF THE MYTHICAL HFSMBTH

Combat

Investigate

Idle

Patrol

Relaxed
Patrol

Alerted
Patrol

Relaxed
Idle

Alerted
Idle

Investigate Last
Known Position

Investigate
Noise

Stand and
Fight

Fight From
Cover

Flanking
Advance

conditions

Medium
Reaction

Reaction
Behavior

DON’T MISS THE POINT

• Now don’t get me wrong!

• HFSMBTH isn’t perfect

• There are some tricks regarding hierarchies and entry states that are needed

• If you want more details on this approach chat to me afterwards

THE POINT

The point isn’t about the state machines

• We could have just as easily use a planner or some other technique

• E.g. BTs could be a good fit to describe tasks in an HTN planner

• My point is that BTs are not an ideal technique for AI decision making

• We are abusing them and scaring new people away

• We are struggling to implement simple concepts and drowning in our own complexity

CONCLUSION

• Behavior Trees are pretty bad with interruptions/transitions

• Stop building cyclic behavior with an acyclic data structure

• Stop building large monolithic trees with multiple responsibilities

• Stop using them for building your AI’s decision making logic

• Behavior Trees are excellent at describing individual behaviors

• Use them to define execution of decisions

• Keep them as small and as simple as possible

• Combine them with other techniques to get the most out of them

BEN WEBER
TWITCH

Overview

1. Additional Node Types

2. Design Patterns

3. Integrating other Architectures

EXTENDING BEHAVIOR TREES

• Additional node types
• Spawn goal

• Working memory modifiers

• Success test

• Issues

• Dynamic behavior lookup

• Task scheduling

• Resource contention

BT DESIGN PATTERNS

• Patterns in EISBot
• Daemon behaviors

• Managers

• Message passing

• Behavior locking

• Unit subtasks

Spawn Goal

DAEMON BEHAVIORS

Selector

Root

Parallel

Task

Loop

• Enable concurrent goal pursuit

• Spawn a new goal which is
persistently pursued by the agent

EXAMPLE DEAMON BEHAVIOR

initial_tree {
spawngoal restockUnits();

subgoal createManagers()
}

parallel behavior restockUnits() {
with (persistent) subgoal trainInterceptors();
with (persistent) subgoal trainScarabs();

}

EISBOT MANAGERS

Strategy Manager

Income Manager
Construction

Manager
Tactics Manager Scouting Manager

Gather
Resources

Construct
Buildings

Attack
Opponent

Scout
Opponent

EXAMPLE MANAGER

parallel behavior incomeManager() {

// production
with (persistent) subgoal pumpProbes();
with (persistent) subgoal buildAssimilators();
with (persistent) subgoal processExpansionRequests();

// harvesting
with (persistent) subgoal mineMinerals();
with (persistent) subgoal putWorkersOnGas();
with (persistent) subgoal pullWorkersOffGas();

}

MESSAGE PASSING

sequential behavior messageProducer() {
mental_act {

BehavingEntity.addWME(new MessageWME());
}

}

sequential behavior messageConsumer() {
precondition { message = (MessageWME) }

subgoal processMessage(message);
mental_act {

BehavingEntity.deleteWME(message);
}

}

BEHAVIOR LOCKING

• Using the blackboard to suspend the execution of behaviors

sequential behavior putWorkersOnGas() {
AssimilatorWME assimilator;

with (success_test {
!(GasHoldWME)
assimilator = (AssimilatorWME)

}) wait;

subgoal assignWorkers(assimilator);
}

UNIT SUBTASKS

Behaviors that temporarily claim a unit to perform a task

EISBot sub tasks
• Micromanagement

• Worker defense

• Building construction

EXAMPLE UNIT SUBTASK

sequential behavior dragoonDance() {
DragoonWME unit;

with (success_test {
unit = (DragoonWME damaged==true task!=FIGHTER_FLEE)

}) wait;

mental_act {
unit.setTask(FIGHTER_FLEE);

}

spawngoal dragoonFlee(unit);
}

EISBOT VIDEO

AUGMENTING BEHAVIOR TREES

• How can we interface behavior trees with other architectures?

EXTERNAL PLAN GENERATION

• Creating sequential or parallel behaviors during runtime

Replay File

Warp Pylon

Train probe

Warp Gateway

Train Probe

Warp Assimilator

sequential behavior buildOrder() {

subgoal buildGateway()

subgoal buildAssimilator()

subgoal buildCyberneticsCore()

}

EXTERNAL GOAL FORMULATION

• Creating new goals or behavior trees at runtime

BEYOND BEHAVIOR TREES

• Joint goals and behaviors

• Meta-behaviors

• Partial programming

WE’RE HIRING!!!

Twitch is hiring!
http://www.twitch.tv/jobs

Remedy is hiring!
http://www.remedygames.com/careers/

THANK YOU!

• Remedy is hiring!

http://www.remedygames.com/careers/

• Twitch is hiring!

http://www.twitch.tv/jobs

