# GOC



4K Checkerboard in Battlefield 1 and Mass Effect Andromeda

**Graham Wihlidal**Rendering Engineer
Frostbite Labs



# Agenda

- Motivation
- Configuration
- ▶ Features
- Optimizations
- Post Processing
- Pipeline
- ▶ Conclusion











# Agenda

- Motivation
- Configuration
- ▶ Features
- Optimizations
- Post Processing
- Pipeline
- ▶ Conclusion































4K





1080p



4K

- ▶ Over the past few years...
- Visual fidelity and complexity has greatly increased
- More memory (order of magnitude)
- Primitive rate (order of magnitude)
- Computational demands (PBR, Dynamic GI, SSR, etc.)

- Over the past few years...
- ▶ Increases in rendering resolution has not
- Majority of current titles are 900p or 1080p
- ▶ It's time that 'perceived' resolution got a bump!



- Detailed geometry results in aliasing artifacts
  - ▶ Lack of high resolution geometry information
  - Image quality is reduced in favor of temporal stability
- Frostbite had deferred MSAA support previously
  - Maintenance nightmare (i.e. shader permutations)
  - Removed to reduce complexity
- Sony added hardware features to PS4™Pro
  - Easier and faster decoupling of geometry and shading rate
  - Less risk for initial adoption

- Reduce shading cost in majority of graphics pipeline
  - Shade only a subset of pixels
  - Compute geometry information for all pixels
  - Some information is lost
- ▶ 4k sampling rate → adjacent pixels are strongly correlated
  - Assuming they belong to the same surface
- High quality geometry-aware resolve to reconstruct

# History

- ► SIE (WWS ATG): PS3<sup>TM</sup> Edge MLAA ('09)
  - ▶ Used Object IDs to drive MLAA edge detection in SOCOM4 [5]
- ▶ SIE (WWS ATG): PS4<sup>™</sup> AA Prototype ('13, unreleased)
  - Use EQAA for higher resolution depth
  - Reconstruct full-resolution image, then resolve down
  - Layer further AA techniques on resulting image
- Guerrilla Games: 'Killzone: Shadowfall' ('13)
  - ▶ Temporal super-resolution with alternating pixel-column
  - ▶ Difference blend operator [3]

# History

- ▶ SIE: PS4<sup>TM</sup>Pro Architecture ('13-15)
  - Alternating Packed Checkerboard Sampling [15]
  - Texture Gradient Adjustment(\*)
  - Pixel Shader Invocation Control(\*)
  - High-Resolution Object and Primitive ID Buffers(\*)
- ▶ SIE (WWS ICE/ATG): 4KCB / 4KG Demos ('15)
  - ▶ First implementations of these techniques in game titles
  - ▶ inFamous: First Light, Knack, Uncharted 4 on PS4<sup>™</sup>Pro hardware [16,17]
- Ubisoft: Rainbow Six | Siege ('15)
  - MSAA checkerboard implementation [1]
- ► EA Frostbite | Labs: PS4<sup>TM</sup>Pro Support for Frostbite ('16)
  - 'Battlefield 1' and 'Mass Effect Andromeda'

- Tried a number of high resolution techniques
  - Variety of resolutions
  - ▶ 50" TV at living room distance
- ▶ Super-sampling \ native 4K
  - ▶ Looks great!
  - ▶ Perf timers don't...
- ▶ Reduced resolution to 1800p
  - ▶ Still too expensive @ 60Hz







- Variable shading rate is popular
- Checkerboard is a practical idea
- Greatly increase resolution
- Without much performance cost



▶ Stencil out 1x1 blocks

- ▶ Using stencil is terrible, no performance gain
- ▶ GPU shades in 2x2 quads
- Same cost as rendering native 4K
  - Throw away half of the work
  - ▶ 50% inactive lanes



▶ Stencil out 2x2 blocks

- Sampling distribution is bad; less correlation
  - ▶ Great coverage in a 2x2 block, then a huge hole
  - ▶ Blurry dilated color bits every 2<sup>nd</sup> quad
- ▶ End up blurring even more to solve
  - ▶ What's the point?



# WEININI !

# HOWAROUTNO

- 2x color and 4x depth checkerboard
  - Available on any MSAA platform
  - Requires all shaders to load from MS textures (lots of changes)
  - Sub-optimal more on this later
- Alternatively, 2x color and 2x depth [1]



- ▶ 1x color and 4x depth geometry resolve (4K Geometry)
  - ▶ 1080p to 4K
  - Was a good idea, and is similar to SRAA [14]
  - ▶ Single Pass + IDs + custom reconstruction
  - Quality wasn't high enough
- Abandoned early in favor of 4K CB
  - Comparable implementation cost
  - More research would improve concept



- Settled on "packed checkerboard" technique
  - ▶ Started with PS4<sup>™</sup>Pro reference implementation
  - Customized + optimized further, and incorporated our own TAA















1800p 21.07ms



1800p CB 15.99ms

#### Agenda

- Motivation
- **▶** Configuration
- ▶ Features
- Optimizations
- Post Processing
- Pipeline
- ▶ Conclusion



#### EQAA – What is it?

- ► EQAA [7] (AMD) is a superset of MSAA
- ▶ Possible to store fewer color fragments than depth fragments
  - ▶ Color <= ID <= Depth</p>
- ▶ 4K checkerboard exploits this configuration
  - ▶ 1x color fragment
  - ▶ 2x ID fragments
  - 2x depth fragments

#### Shading Quads – 2x Color: 4x Depth



8 Shaded, 2 Stored

#### Shading Quads – 1x Color: 2x Depth



4 Shaded, 2 Stored

# EQAA Checkerboard Layout



Note: Positions are specified per-quad

#### Agenda

- Motivation
- Configuration
- ▶ Features
- Optimizations
- Post Processing
- Pipeline
- ▶ Conclusion



- ▶ Generated at a resolution higher than shading resolution
- ▶ Each visible geometry sample
  - Identifier stored in image buffer
  - Uniquely identifies object and primitive
- Instanced draws provide a separate object ID per instance
  - Draws take pointer to an array of object IDs, one for each instance
- Tessellated draws are given a primitive ID per input patch

- Written during depth-only passes, or main scene render
- Depth/ID-only
  - Consumes less memory bandwidth than shading passes
  - ▶ Performed without shader involvement (on PS4<sup>TM</sup>Pro)
  - Allows asynchronous compute jobs running in parallel
- CPU and GPU overhead
  - We don't use full pre-pass
  - Alpha tested objects + dominant occluders
- Main shading
  - Easier to integrate if no existing depth-only pass
  - Competes with memory bandwidth
  - ID-only samples don't pay for shading

- ▶ We use 31-bits wide
  - MSB ignored by hardware
  - ▶ 14-bit object ID + 17-bit primitive ID
- ▶ Primitive ID reset to 0 at the end of each instance or draw

- Color target bound as 8<sup>th</sup> MRT
  - Uses CB's data paths and color target tile modes
  - Safe to use null pixel shader
  - Not treated as a pixel shader target during ID propagation
- ▶ IDs can also be exported from vertex shader
  - Could reduce number of VS wavefronts active on chip
- Many other interesting use cases
  - ▶ Not covered in this presentation ©
- Can be used in resolve to improve quality of final image [5]







- Horizontal gradient is twice the expected value
- Vertical gradient is stretched and rotated 45°
- Resembles bad anisotropic filtering



**Expected Gradient** 



**Real Gradient** 

- Need to apply non-uniform rescale
  - Rectangular pixels
- ▶ LOD Bias
  - Doesn't work scales uniformly
- Use SampleGrad fetch:



**Expected Gradient** 



tex.SampleGrad(samp, input.uv0, duvdx\_adj, duvdy\_adj);

$$\begin{vmatrix} d[uvw]'_{dx} \\ d[uvw]'_{dy} \end{vmatrix} = \begin{vmatrix} factor_{00} & factor_{01} \\ factor_{10} & factor_{11} \end{vmatrix} * \begin{vmatrix} d[uvw]_{dx} \\ d[uvw]_{dy} \end{vmatrix}$$

#### Identity (No Adjustment):

$$\begin{vmatrix} d[uvw]'_{dx} \\ d[uvw]'_{dy} \end{vmatrix} = \begin{vmatrix} 1.0 & 0.0 \\ 0.0 & 1.0 \end{vmatrix} * \begin{vmatrix} d[uvw]_{dx} \\ d[uvw]_{dy} \end{vmatrix}$$

#### Frame N + 0:

$$\begin{vmatrix} d[uvw]'_{dx} \\ d[uvw]'_{dy} \end{vmatrix} = \begin{vmatrix} 0.5 & 0.0 \\ -0.5 & 1.0 \end{vmatrix} * \begin{vmatrix} d[uvw]_{dx} \\ d[uvw]_{dy} \end{vmatrix}$$

#### Frame N + 1:

$$\begin{vmatrix} d[uvw]'_{dx} \\ d[uvw]'_{dy} \end{vmatrix} = \begin{vmatrix} 0.5 & 0.0 \\ 0.5 & 1.0 \end{vmatrix} * \begin{vmatrix} d[uvw]_{dx} \\ d[uvw]_{dy} \end{vmatrix}$$

- Manual gradient correction with shader ALU
  - ► ~10% extra cost in main shading
- SampleGrad issue is more expensive than normal fetch (in cy)
  - No change in bandwidth / latency
  - Fetch and filter are unaffected
- Increased register pressure
  - Keep derivatives around
  - ▶ Need to be careful!

▶ However...

Only shade half the pixels

Not all instructions in the shader are a fetch

Overall win

- ▶ PS4<sup>TM</sup>Pro has special hardware and compiler support!
- ▶ Hardware can perform this in the texture unit
- Affine transform stored in texture unit
- ▶ Just turn it on ② ALU portion is free







- Most cases can be automatically adjusted
- Explicit gradients (ddx/ddy) need to be manually corrected
  - Custom filtering
  - Virtual texturing
  - ▶ etc.





### Barycentric Evaluation



Pixel Positions



✓ Sample Positions

# Barycentric Evaluation



Pixel Positions

# Barycentric Evaluation



Sample Positions



#### Alpha Unrolling

- Alpha test computes depth/coverage inside pixel shader
  - Instead of relying on scan-converter, like opaque
- ▶ By default, pixel shader runs at pixel rate
- All samples of a pixel share output of single shader invocation
- ▶ IDs at shading rate instead of full rate
- Serious problem with hole reconstruction

## Alpha Unrolling

- Solution: Run samples at coverage rate!
  - Generate full resolution depth and IDs
- ▶ Each pixel quad is unrolled
  - Shading quad created per sample
- Large increase in pixel shader work
  - Important to switch off when not needed

## Alpha Unrolling

- Run minimal pass to calculate coverage
  - Computes coverage/depth (Clip / Depth Write)
  - Coverage rate (2x)
- Run expensive shading pass
  - Computes color values (Depth Equals)
  - Benefits from maximal hidden surface removal
  - Pixel rate (1x)

## Alpha Unrolling

Positions need to be invariant!

- Positions written by coverage and shading need to match
- Subtle differences in computation can lead to z-fighting
- ▶ Disable "fast math" for everything that goes into the position









## Agenda

- Motivation
- ▶ Configuration
- ▶ Features
- Optimizations
- Post Processing
- Pipeline
- ▶ Conclusion



#### PS Invoke

- ▶ Every sample position...
  - ▶ If covered by a triangle, can trigger pixel shading
  - ▶ Checkerboard uses 1x color and 2x depth/IDs
  - ▶ Half of the shading does not contribute to final image
- ▶ How can we prevent over-shading?
- Pixel Shader Invocation Control (PS Invoke)
  - Can make samples "non-shading"
  - ▶ Get the shading work back to what it would be with a single sample

#### FP16

- ▶ PS4<sup>TM</sup>Pro has support for FP16 GCN instructions
- Used throughout checkerboard resolve shader
- ▶ 30% performance improvement

- Many passes do not require higher-resolution depth and IDs
  - ▶ Don't waste depth block (DB) bandwidth! Can be ½ instead
- Transparent objects + post-processing are candidates
  - ▶ Do not write depth
  - Read from single-sample!
- Resolve to single-sample depth and stencil
  - Occurs after partial pre-pass + gbuffer laydown

- Simple approach is to copy depth with compute shader
  - Requires depth\HTILE decompression 8
  - ▶ Slow!
- ▶ Use color block (CB) trick to resolve without decompression!
- ▶ AMD Evergreen Acceleration document [8] describes:
  - CB copy of depth to color target
  - No decompression needed
  - Great! But we want a usable depth surface in the end, not color
    - ▶ Buckle up.... ⓒ

- ▶ Dummy shader that writes R32F 0.0f
  - exp mrt0, 0.0, off, off vm done
- Alias the destination depth target as a color target
  - ▶ 2d non-displayable thin and 1xAA depth micro tiling are the same
- ▶ Set DEPTH\_COPY bit on DB\_RENDER\_CONTROL
  - ▶ PS puts a dummy value on mrt0.x
  - ▶ DB replaces it later
- ▶ The CB writes the depth to the destination Z surface
  - ▶ Without HTILE!

- Stencil is done in a similar manner
  - Set STENCIL\_COPY bit in DB\_RENDER\_CONTROL
- ▶ CB writes stencil to G channel
- Destination is a color target aliasing stencil
  - Only R channel present
- Adjust CB color info register to swizzle
  - ▶ G to R on write
  - As per COMP\_SWAP [4] to configure as SWAP\_ALT

```
// Make sure the compiler does not export and clamp to 16 bit depth

float2 psMain() : SV_Target
{
    // Shader will export dummy PS value to MRT
    // DB will switch R to depth value (relies on DB_RENDER_CONTROL.DEPTH_COPY=1)
    // DB will switch G to depth value (relies on DB_RENDER_CONTROL.STENCIL_COPY=1) - then swizzle YX00
    // R=Depth, G=Stencil
    return float2(0.0f, 0.0f);
}
```







- Original HTILE has correct ranges
  - but has compressed ZMask codes
- Patch up the HTILE by copying it
  - ▶ Fast compute shader! (6µs)
  - Force ZMask bits to 0xF (expanded)
  - Store patched meta data
- ▶ HTILE acceleration works on the 1xAA destination
  - Any further writes will compress as expected

HTILE copy:

```
Buffer<uint4> g_htileSource : register(t0);
RWBuffer<uint4> g htileTarget : register(u0);
 // 16200 threads for 1920x2160
 [numthreads(64, 1, 1)]
 void main(uint3 threadId : SV_DispatchThreadID)
     uint4 htileValues = g_htileSource[threadId.x];
     // Mark 4 tiles as "expanded"
     htileValues |= 0xF; // 3:0 ZMask
     g htileTarget[threadId.x] = htileValues;
```

- ▶ This saved us 1ms over basic copy!
- Leaves the source depth and stencil fully compressed
  - DBs and CBs do the work
    - Which understand compression
  - Instead of shader cores doing it
    - Would require decompression
- ▶ Technique is completely bandwidth-bound ©
  - ▶ ~0.1ms for depth, ~0.1ms for stencil

## Agenda

- Motivation
- ▶ Configuration
- ▶ Features
- Optimizations
- ▶ Post Processing
- Pipeline
- ▶ Conclusion



### Post Processing

- Trade-off between performance and quality
  - Move as much post-processing before CB resolve as possible
- Very time consuming and painful work
  - Evolving codebase breaks checkerboard often
  - New concept to many
- Auto-test checkerboard pipeline if possible

### Post Processing

- ▶ Operations that ignore geometry provide little value at 4K
  - ▶ i.e. SSAO, luminance estimation, etc..
- ▶ Limiting color propagation over an edge run at lower res
- Need to account for checkerboard "pixel grid"
  - ▶ Linear sampling of checkerboard surface is problematic
  - Aspect ratio of the buffer is different from normal 16:9
- ▶ Most cases you can ½ the horizontal filter width





#### Post Processing

Corrected with:

```
float2 getCheckerboardUvOffset(uint2 pixCoord, uint cbStatePacked)
{
    float halfWidth = asfloat(cbStatePacked);
    uint parityBit = cbStatePacked;
    return float2(halfWidth * (((pixCoord.y + parityBit) & 1) - 0.5), 0);
}
screenUv += getCheckerboardUvOffset(pixelCoord, g_checkerboardUvOffsetPacked);
```

Offsets UV used for clip-space position reconstruction

```
static u32 getCheckerboardUvOffsetPacked(u32 viewWidth, bool enabled, u32 frameIndex)
    union
       float f;
        u32 u;
    } packed;
       (enabled)
        packed.f = 0.5f / float(viewWidth);
        packed.u &= ~u32(1);
        packed.u |= (frameIndex & 1u);
    else
        packed_f = 0.0f;
    return packed.u;
```

#### BF1: PS4<sup>TM</sup>Pro

1600x1800

3200x1800

3840x2160

- Clear (IDs and Depth)
- Partial Z-Pass
- G-Buffer Laydown
- Resolve AA Depth
- G-Buffer Decals
- HBAO + Shadows
- Tiled Lighting + SSS
- Emissive
- Sky
- Transparency
- Velocity Vectors
- CB Resolve + Temporal AA
- Motion Blur
- Foreground Transparency
- Gaussian Pyramid
- Final Post-Processing
- Silhouette Outlines

• Display Mapping + Resample

#### MEA: PS4<sup>TM</sup>Pro

1600x1800

3200x1800

3840x2160

- Clear (IDs and Depth)
- Partial Z-Pass
- G-Buffer Laydown
- Resolve AA Depth
- G-Buffer Decals
- HBAO + Shadows
- Tiled Lighting + SSS
- Emissive
- Sky
- Transparency
- Velocity Vectors
- CB Resolve + Temporal AA
- Sprite Depth-of-Field
- Motion Blur
- Foreground Transparency
- Gaussian Pyramid
- Final Post-Processing
- Silhouette Outlines

• Display Mapping + Resample

#### Checkerboard Resolve

#### Spatial Component

- ▶ Color Bounding Box
- Differential Blend Operator
- Object and Primitive IDs

#### Temporal Component

- Sub-Pixel Jittering
- Velocity-Based Reprojection
- Neighborhood Clamping

# Spatial Component

- ▶ Color Bounding Box
- Differential Blend Operator
- Object and Primitive IDs



- Checkerboard resolve does not use depth
- Use color to determine if edges are soft
- Avoid contribution to a pixel from different objects
- ▶ If all neighbors are different objects, average is used

| • | 0 | • | $\nearrow$ | • | 0        | •  | 0              | • | 0  | •  | 0 | • | 0 | • | 0 |
|---|---|---|------------|---|----------|----|----------------|---|----|----|---|---|---|---|---|
| 0 | • | 0 | 0          |   | <u> </u> | 0  | 0              | 0 | 0  | •C | 0 | 0 | • | 0 | • |
| • | 0 | • | 0          | • | 0        | Q  | <sub>o</sub> B | • | 0  | •  | 0 | • | 0 | • | 0 |
| 0 | • | 0 | 0          | 0 | 0        | •А | 1              | 0 | 0  | 0  | 0 | 0 | • | 0 | • |
| • | 0 | • | 0          | • | 0        | •  | 0              |   | v° | •  | 0 | • | 0 | • | 0 |
| 0 | • | 0 | 0          | 0 | 0        | 0  | 0              | 0 |    | 9  | 0 | 0 | • | 0 | • |
| • | 0 | • | 0          | • | 0        | •  | 0              | • | 0  | •  | d | • | 0 | • | 0 |
| 0 | • | 0 | 0          | 0 | 0        | 0  | 0              | 0 | 0  | 0  | 0 |   | • | 0 | • |







Copy Single Sample

✓ Comparison Heuristic





Copy Single Sample

# Color Bounding Box





Comparison Heuristic





Neighborhood Average

Differential Blending





✓ Differential Blending



Differential Blending + IDs



Neighborhood Average



✓✓ Differential Blending + IDs

```
float colorDiffBlend(float3 a, float3 b)
{
    float differential = a - b;
    float len = sqrt(dot(differential, differential));
    return 1.0f / (len + 0.001f);
}

float differenceWeights[2] =
{
    (objectId[UP] != objectId[DOWN]) ? 1.7f : colorDiffBlend(colors[UP], colors[DOWN]),
    (objectId[LEFT] != objectId[RIGHT]) ? 1.7f : colorDiffBlend(colors[LEFT], colors[RIGHT])
};
```

## Object and Primitive IDs



- Object ID
- Primitive ID



- Object ID
- ✓ Primitive ID



- ✓ Object ID
- Primitive ID



- Object ID
- ✓ Primitive ID

## Temporal Component

- Similar to existing research [2][11][12]
- Not covered here
  - Sub-Pixel Jittering
  - Neighborhood Clamping
- Velocity-Based Reprojection
  - Updated for checkerboard

#### Velocity-Based Reprojection

- Objects and surfaces are moving
- ▶ Pixel grid is stationary
- ▶ Need to correlate 3D surfaces in motion
- Surfaces write per-pixel velocity vectors
- Dilate velocities to keep anti-aliased edges
  - ▶ Use front-most velocity in 3x3 window
  - Depth is expensive to fetch!

2 Pixels Per Thread Pass-through and Filtered





**Pass-through Pixel** 







## Sharpen Filter

- ▶ Blurred image lacks high-frequency components
  - ▶ Hard to discern objects, visual cortex lacks information
  - Ganglion cells respond acutely to high-frequency components [6]



### Sharpen Filter

- Amplify (recover) high-frequency components
  - Greatly enhance visual quality
  - Performed after image reconstruction in temporal AA
- ▶ Be careful to not reintroduce aliasing
  - (false high-frequency)
- ▶ Be careful to not introduce ringing
  - (over-sharpening)

















G

6/1

<sup>4</sup> **E** T <sup>55</sup> <sub>2</sub>

\* EYE # 3

\* EXAM \*\* 4

SREGU<sup>m</sup> 5

LARLY! \*\* 6

ANDYOUW OF

ILLBEBET est

TERFORIT #4

Section 2 and the

## Post Processing

- Once checkerboard is in enabled, brace yourself
- Every single artifact now looks like a checkerboard artifact
- Add lots of debug overlays to help debug
- Teach others how to diagnose!









"Call me old fashioned, but I love a good witch-hunt!"



## Agenda

- Motivation
- Configuration
- Features
- Optimizations
- Post Processing
- Pipeline
- Future Work



### Render Target Aliasing

- Biggest pain of 4K transition was memory!
  - Majority of our render targets were to blame
  - At the time, no fancy memory management of them
- Extra effort spent here impacted other 4K improvements
- ▶ "11<sup>th</sup> hour" explicit aliasing to ship saved ~230mb
- ▶ Future Titles
  - See: FrameGraph: Extensible Rendering Architecture in Frostbite



## Dynamic Resolution Scaling

- Developed by DICE and Microsoft
- Plays nicely with 4K checkerboard
- Checkerboard always active
- Dynamic scaled initial frame resolution
  - Determined with running performance heuristic

## Dynamic Resolution Scaling

- ▶ BF1 contains a number of infrequently running GPU tasks
- Caused resolution to slightly adjust almost every frame
  - Not an issue
- Worked with jitter to provide variation in subpixel detail
- Tried preventing upscale if camera wasn't moving
  - Resulted in noticeably lower quality image

## Dynamic Resolution Scaling

No one complained about it!



## Agenda

- Motivation
- ▶ Configuration
- ▶ Features
- Optimizations
- Post Processing
- Pipeline
- **▶** Conclusion





▶ **Total:** 15.99 ms

▶ Clear IDs: 0.57 ms

► Copy Expanded HTile [3x]: 0.02 ms

Resolve EQAA Depth [3x]: 0.69 ms

► CB Resolve + Temporal AA: 1.15 ms

▶ Everything Else: 13.56 ms

▶ 1800p CB vs 1800p (saves **5.08 ms**)



| Timer    | 1800p   | 1800p CB |
|----------|---------|----------|
| G-Buffer | 4.25 ms | 3.11 ms  |
| Shadows  | 4.13 ms | 2.63 ms  |
| Lighting | 2.31 ms | 1.61 ms  |
| Sky      | 0.63 ms | 0.32 ms  |
| Half Res | 1.54 ms | 0.77 ms  |
| Velocity | 0.57 ms | 0.25 ms  |
| НВАО     | 2.47 ms | 1.08 ms  |





▶ **Total:** 23.42 ms

▶ Clear IDs: 0.41 ms

► Copy Expanded HTile [3x]: 0.02 ms

▶ Resolve EQAA Depth [3x]: 0.80 ms

► CB Resolve + Temporal AA: 2.00 ms

▶ Everything Else: 20.19 ms

▶ 1800p CB vs 1800p (saves **13.40 ms**)



| Timer    | 1800p   | 1800p CB |
|----------|---------|----------|
| G-Buffer | 5.11 ms | 4.41 ms  |
| Shadows  | 3.70 ms | 3.32 ms  |
| Lighting | 13.5 ms | 7.32 ms  |
| Sky      | 0.50 ms | 0.29 ms  |
| Half Res | 2.53 ms | 1.48 ms  |
| Velocity | 0.32 ms | 0.27 ms  |
| НВАО     | 3.11 ms | 1.27 ms  |



#### Future Work

- Further improvements to checkerboard resolve
- Alternative approaches to alpha testing
  - Alpha mask export
  - Pixel rate coverage (not sample)
- ▶ More uses for IDs
  - Temporally stable object and primitive IDs?
  - Replace stencil-based tagging [9]
    - Help eliminate ghosting with temporal re-projection
  - Remove heuristics in favor of comparisons

#### Future Work

- Packed checkerboard on other platforms
  - ▶ Hardware features like ID buffer only exist on PS4™Pro
  - ▶ Reasonable workarounds exist for Xbox<sup>™</sup> and base PS4<sup>™</sup>.
- Need EQAA + programmable sample locations
  - ▶ Vulkan + DirectX12
- Driver support for efficient EQAA depth resolve
  - Leave source compressed
  - Bandwidth-bound

#### Future Work

- ▶ Filtered visibility buffer [10] + decoupled shading
- G-buffers are challenging at high resolutions
- Classic deferred shading isn't the answer
- ▶ Decouple g-buffer from screen resolution

### Special Thanks

- ▶ Tobias Berghoff
- Nicolas Serres
- ▶ Tim Dann
- ▶ Tomasz Stachowiak
- Yasin Uludag
- Keven Cantin
- Mark Cerny
- ▶ Johan Andersson
- Christina Coffin
- Chris Brennan
- ▶ Timothy Lottes

- ▶ Rob Srinivasiah
- Jason Scanlin
- ▶ Dave Simpson
- Bart Wronski
- Martin Fuller
- James Stanard
- ▶ Ivan Nevraev
- ▶ Colin Barré-Brisebois
- Matthäus Chajdas
- ▶ Frostbite Rendering
- Sucker Punch

#### References

- [1] Rendering 'Rainbox Six | Siege' Jalal El Mansouri
- ▶ [2] <u>High Quality Temporal Supersampling</u> Brian Karis
- ▶ [3] Taking Killzone Shadow Fall Image Quality Into The Next Generation Michal Valient
- ▶ [4] Radeon Southern Islands 3D/Compute Register Reference Guide AMD
- ▶ [5] MLAA on PS3 Tobias Berghoff, Cedric Perthuis
- ▶ [6] Hubel, D. H., and T. N. Wiesel. 1979. "Brain Mechanisms of Vision." Scientific American 241(3), pp. 150–162.
- ▶ [7] EQAA Modes for AMD 6900 Series Graphics Cards AMD
- ▶ [8] Radeon Evergreen/Northern Islands Acceleration AMD
- [9] Temporal Antialiasing in Uncharted 4 Naughty Dog
- ▶ [10] The Filtered and Culled Visibility Buffer Wolfgang Engel
- ▶ [11] Real-Time Global Illumination and Reflections in Dust 514 Hugh Malan
- ▶ [12] Anti-Aliasing Methods in CryENGINE 3 Tiago Sousa
- [13] Dynamic Resolution Rendering Doug Binks
- ▶ [14] <u>Subpixel Reconstruction Antialiasing</u> NVIDIA
- ▶ [15] "PlayStation®4 SDK / PS4<sup>™</sup>Pro High Resolution Technologies" SIE (Tobias Berghoff, Tim Dann)
- ▶ [16] "Implementing 4K Checkerboard Lessons from 4K Knack and U4 Demos", Jason Scanlin SIE WWS ICE, May 2016
- ▶ [17] "Making the inFAMOUS 4K Demo", Tobias Berghoff SIE WWS ATG, May 2016

## Questions?

Graham Wihlidal
<a href="mailto:graham@frostbite.com">graham@frostbite.com</a>
Twitter - @gwihlidal

Thank You!

