
Adopting

Continuous Delivery

Jafar Soltani

Lead Software Engineer

Rare Ltd.

Microsoft Studios

Traditional Development Process

❖ Monolithic application, developed in C++

❖ Waterfall Process, Three main phases:

❖ Pre-production or prototyping

❖ Production

❖ Bug fixing

❖ Heavily rely on an army of testers

❖ One big release followed by a handful of updates

❖ Multiplayer, cooperative adventure game

❖ Game as a service

❖ Over 150 releases to technical alpha Audiences

❖ The game is gone live This week

Sea of thieves

Why We’re adopting continuous delivery

1. Sustainably delivering new features over long period of time

2. Minimising Crunch and having happier developers

3. Getting fast feedback and delivering a better quality game

that is more fun

4. Reduce cost of having a large manual test team

Continuous Delivery vs frequent release

Release Release Candidate Broken Candidate

Frequent Release

Continuous Delivery

How we’re adopting

continuous Delivery

How we’re adopting continuous Delivery

1 - Developers are responsible for the quality of their feature

❖ Very inefficient to verify the game manually

❖ Developers write automated tests to verify their work:

❖ 40,000 automated tests , running 4 million tests each day

❖ 90 Percent unit tests in C++

❖ 10 Percent End to End, performance and memory tests

❖ Add regression tests when fixing bugs

How we’re adopting continuous Delivery

2 - Game is always shippable

❖ Prioritise fixing bugs and broken tests over developing new features

❖ lock The depot every time we can’t ship or the commit stage is broken

❖ Build lights and tv screens to notify everyone

Q
u
a
l
it

y

Time

Quality and Confidence over time

Traditional Development Model Continuous Delivery Applied

Quality and reliability of the game Over time

3 –Each build contains small number of changes

Developers break down their work into

Small chunks and try to checkin once a day

How we’re adopting continuous Delivery

R
is
k

Number of changes

When there are more changes in

a build, risk grows exponentially

How we’re adopting continuous Delivery

Feature A

Feature B

Feature C

Trunk

QA

ReleaseSubmit

Integrate

Merge

Release

Traditional Branching strategy

How we’re adopting continuous Delivery

Problems with Traditional Branching strategy:

❖ Painful Merge Conflicts

❖ Binary files

❖ Semantic conflicts

❖ Long feedback loop

❖ Integrating fixes to multiple branches

How we’re adopting continuous Delivery

Trunk

Release

Feature CFeature A

Feature B

Submit

4 - Trunk-based Development

Feature Toggle

5 - Feature toggles

❖ Compile-time toggle

❖ Allow everyone to work on trunk

❖ Prevent in-progress features from being released

❖ Dynamic toggle

❖ Roll out new features t0 a small set of players, learn and build

confidence in the features

Compile-Time Toggle

Feature Toggle

json file

{
"features" :
{

"featureA" : {
"enabled" : true,
"description" : "This is feature A"
},

"featureB" : {
"enabled" : false,
"dynamic" : true,
"description" : "This is feature B"
}

}
}

cpp file

if (GFeatureConfig.IsFeatureEnabled(TEXT("featureA")))
{

// ...

}
else
{

// ...

}

Dynamic Toggle

Feature Toggle

json file

{
"features" :
{

"featureA" : {
"enabled" : false,
"description" : "This is feature A"
},

"featureB" : {
"enabled" : false,

"dynamic" : true,
"description" : "This is feature B"
}

}
}

1 – Server asks Service for
the list of features

2 – Service returns the list

3 – Client asks Service for
the list of features

4 – Service return the list

5 – Client sends the list to
Server before joining the game

6 – Server matches Client list and either
let the Client join or rejects it

Configuration
Service

Client

Server

1

2

3

4

5
6

How we’re adopting continuous Delivery

6 - Continuously improve Cycle Time

What is cycle time

Decide to make a
change

Analyse the work
Implement and test

the work

Review and submit

CI Server verifies the
change

Manual verification
Release to

Production/Retail

Cycle Time

Why we should optimise cycle time

Benefits of short cycle time:

❖ Fast feedback loop, leads to better quality

❖ Enables working in small batch and reduces risk

❖ Reduces hand-overs,, leads to cross-functional teams

❖ Fast response time

Deployment Pipeline

Deployment Pipeline is the Implementation of our process developing and

releasing features to players.

We formed A team of engineers to implement the deployment pipeline

Deployment Pipeline

What Deployment Pipeline team does:

❖ Develop test framework

❖ Responsible for the workflow, infrastructure and pipeline

❖ Improve cycle time:

❖ Develop system to identify flaky tests

❖ Feature toggle

❖ Improve build time, Cook time

❖ Parallelise running tests

7 - Impact of technical debt on velocity

How we’re adopting continuous Delivery

V
e
l
o
c
it

y

Time

Delivering new features over Time

Accumulate Tech Debt Tackle Tech Debt

When to tackle technical debt

tackling technical debt regularly and improving code

maintainability

T
e
c
h
n
ic

a
l

D

e
b
t

Time

Technical Debt over time

Tech Debt

How we’re adopting continuous Delivery

8 - Continuous improvement:

❖ Our most important principle. We’re building a learning organisation

❖ Regular retrospectives

❖ Post-mortem after every incident

❖ Allocate time to complete actions from retrospectives and post-

mortem

❖ Evolved our process and principles over time

Challenges in adopting continuous Delivery

Challenges in adopting continuous Delivery

Adopting Testing mind-set:

❖ Started with a small core team who believed in this idea

❖ Gradually added more people to the team

❖ Having a separate prototype was crucial to setup the project

correctly from the beginning

❖ Check Adequate tests added during code review

Commit Stage

Compile Code Run small tests

Artifact
Repository

Code Binaires Code Binaries

Version
Control
System

Commit Stage

Cook Assets

Commit Stage

Developers wait for the verification before starting new work, go to meeting, lunch

or home

Having a fast commit stage

Lessons :

❖ need to continuously improving otherwise it gets worst

❖ optimisation can lead to more complicated systems

❖ Monitor stability as you optimise

❖ Identify and Stop doing unnecessary work

Having a fast commit stage

Compiling large c++ codebase takes a long time:

❖ Use a distributed build system

❖ Incremental build

❖ Build farm consists of 150 powerful physical PCs

Having a fast commit stage

Identifying and prioritising most valuable tests

❖ Prioritise running tests that break more often but still run other tests at

lower frequency

❖ Create a map between code and test, only run the tests that are affected

by code Change

Having a fast commit stage

Transferring multi gb files between agents in build farm:

❖ Fast network connection between agents

❖ Each Build agent has a local cache, don’t have to download same build again

❖ Build Agents serve builds to each other (high network bandwidth)

Challenges in adopting continuous Delivery

Continuously identifying and eliminating flaky tests

Lose confidence in
the automated tests

Infect the automated
tests

Don t know if your
change caused the

failure

Fail other people s
build

Afraid of making
changes

Flaky Tests

Slower to develop
new features

Challenges in adopting continuous Delivery

Continuously identifying and eliminating flaky tests:

❖ Fewer deterministic tests much better than lots of tests that are flaky

❖ Don’t let flaky tests infect the pipeline

❖ Quarantine flaky tests:

❖ fix them and move them out

❖ Delete them

Common causes of flaky tests

❖ Using random waits, sleep for X seconds, common when testing async behaviour

❖ Tests not isolated, might pass or fail depends on tests that ran previously

❖ Relying on external dependencies such as a remote service

How much time to allocate for improvement

Three types of work:

1. develop feature

2. Unplanned and emergent work such as fixing bugs,

3. Reduce root cause of unplanned work (improvement work)

There’s no rule on how much you should dedicate to each

Too much unplanned work means not enough time on improvement

Challenges in Releasing weekly with confidence

❖ Keeping patch size small

❖ Delivering new features regularly/weekly

❖ minimising the impact of something going

❖ Respond quickly to Incidents

❖ Certification process

Summary

❖ Work in small batches

❖ Release regularly and safely

❖ something will go wrong, fast response time

❖ Continuously improve

❖ we’re not done with continuous delivery

References

Continuous Delivery Test

Thank you

