
Audio Propagation Through the 

Ears of VERA

Jeff Ballard
Software Engineer – Microsoft ATG

Robert Ridihalgh
Senior Technical Audio Specialist – Microsoft ATG



Lighting Acoustic Properties
▪ Occlusion and Obstruction

▪ Reflections

▪ Portaling

▪ Occlusion and Obstruction

▪ Early Reflections

▪ Portaling

▪ Late Reverb

Lighting Properties



▪ Static world
• Manual acoustic zones or trigger boxes

▪ Procedurally generated world
• Complicated and imperfect

• A lot of manual work still required

▪ Dynamic and destructible world
• Lots of code to modify hand created zones

Acoustic Simulation Challenges



▪ Brute force raycasting
• Per sound path finding

• Can be expensive and lack information

▪ Wave simulation
• Usually too expensive for real time

▪ Game specific implementations

Existing Solutions



▪ Provide a variety of valuable data for audio propagation in real 

time

▪ Drastically reduce manual iteration and markup

▪ Heavily scalable

▪ Portable and universal

Setting Goals



VERA can automatically generate:

▪ Obstruction and occlusion data

▪ Environmental data including reflection surfaces

▪ Locations for audio portaling

VERA features:

▪ Support for any platform

▪ Standalone library and UE4 plugin

▪ Audio engine agnostic

▪ 100% linear scalability

▪ Support for unlimited emitters

Voxel Engine for Real-time Acoustics



▪ Step 1: Voxelize
• Optimized system for converting 3D geometry into voxels

• Voxels have “density”

▪ Step 2: Set a reference point
• Usually the point where the listener is in relation to geometry

▪ Step 3: Floodfill
• Propagate “movement” data throughout voxel space

▪ Results
• A 3D map of the cost for audio to propagate from the reference point

VERA’s Core



Obstruction Occlusion



Environment



Portaling



▪ Multiple voxel spaces

▪ Variable level of detail (LOD)

Handling Large Environments



Video: 2D Sample



Case Studies



▪ Perfect match for voxel engine

▪ Obstruction/Occlusion in a fully 

dynamic world

▪ Scale to target slower PCs

▪ Small audio space, faster 

updates

Case Study: Minecraft



▪ Only uses +/- on 3 cardinal axis

▪ Finds which are “open”

▪ Get the area around the player

▪ Treat data differently based on if there is geometry overhead

▪ Adjust decay times based on area around the player

Case Study: Minecraft Reverb



Video: Minecraft



▪ Drop in integration

▪ Matches UE4 paradigms (actors, 
components, etc)

▪ Fully scriptable in blueprint

▪ Debug tools for visualization and 
performance

▪ Numerous feature toggles
• Density
• Portaling
• Threading
• Memory limits

Case Study: UE4 Plugin



▪ First large scale integration

▪ Improve dev tools for 

optimizing usage

▪ First UE4 exercise with diverse 

assets

Case Study: State of Decay 2



▪ Lerping to account for update 

delay

▪ Tweaking obstruction and 

occlusion curves

Case Study: State of Decay 2



Video: State of Decay 2



▪ Geometry collection
• Potential impact on physics engine

• Filtering

▪ Fitting in to memory and CPU 

requirements
• Linear scaling

▪ Title specific integration

Implementation Challenges



▪ Audio listeners inside voxels

▪ Audio emitted from inside of 

voxels

Implementation Challenges



▪ Audio propagation is essential for immersion

▪ Implementing audio propagation is challenging

▪ Early implementation pays off

▪ Research and development is ongoing for VERA and more!

Wrap Up



Thank You!

Jeff Ballard
@lifespan

Software Engineer – Microsoft ATG

Robert Ridihalgh
Senior Technical Audio Specialist – Microsoft ATG


