

- why this talk is different from last year
- for server engineers and those who work with them

- what you will learn and who this is for
- pls dont DDOS yourself on launch day

Photo credit: https://www.flickr.com/photos/zagrobot/2731084578

2

● Architecture

● 101: Client-Server Patterns

● 201: Preparing For Scale

● 301: 100M DAU? NP

● Deployment

● 101: Getting Bits on Atoms

● 201: Global Simultaneous Rolling Zero-Downtime Deploys, Oh My

● Operations

● 101: Instrumentation and Triage

● 201: Operations At Scale

This	provides	a	framework	for	the	speakers	to	own	various	sections.

https://www.flickr.com/photos/dancedancedancephotography/3356807821/

3

The image is programmer art - obviously

Our case study game has some
important qualities which we’ll call upon
throughout this talk. As you might
guess, it’s a multiplayer battle royale
game that can handle hundreds of
concurrent players and matches. It’s
launched globally and is incredibly

4

popular, handling millions of users with
spikes whenever we release new
content.

What are you building and how are you
building it?

Side of the picture

Photo Credit: Jennie Lees

(change: jennie -> sela)

AUTHORITATIVE SERVERS

If you saw our talk last year, we touched
briefly upon security from the client’s
perspective. There’s always a server
component as well, which most server
engineers in the room probably already
know about. We mention this mostly for
completion, and for the non-server
engineers in the room.

There is some text about authoritative
servers here and shared model. NEVER
TRUST THE CLIENT.

Running a simulation on the server adds
latency to all actions in the game, so you
have to consider the tradeoffs involved.
Will clients see visible discrepancies?
Many games will perform predictions on
the client and attempt to reconcile with
the server; in any disagreement, the
client should reset. At DropForge games,
we ran our game logic on both the client
and the server and sent inputs to the
server. The client moved forward at the
player’s pace, showing no latency, and
sent up a checksum. Checksum
mismatches would result in the client
resetting as a form of anti-cheat and an
attempt to reduce desync issues.

If you want to learn more, check out
Timothy Ford’s excellent GDC 2017 talk
on Overwatch’s architecture, where he
goes into detail about how they handle

reconciliation between the client’s
predictions and the server’s authoritative
results.

Charlie Bro

https://www.flickr.com/photos/lajuna/11
19176759/in/

When you’re thinking about security, you
might want to think about what you can
do on your requests. You also might
want to think about how they affect your
ability to scale upward. Take SSL, for
instance. You probably want to use SSL
to encrypt your requests, but what are
the consequences? How much time will
you spend establishing connections for
each microservice? (Remember, you
need to back-and-forth a few times

during the SSL handshake. In China,
that can be veeeery slooooow.) And how
much time will you spend doing crypto
on the server? Ultimately, SSL >
insecure connections, but it’s worth
understanding the cost.

The big advantage is reducing the
information the client can see and
modify. Any dedicated client can be
malicious, but this is equivalent to
locking your front door. We can pick the
lock with a MITM certificate, but it
becomes much harder. It also reduces
the ability for malicious entities to learn
what data is stored in your client vs.
your server. You’re also not limited to
TCP - DTLS will allow you to send UDP
packets over a secure connection.

http://info.ssl.com/article.aspx?id=1024
1 https://www.ssl.com/article/ssl-tls-
handshake-overview/

How do the different security options

affect your ability to scale?
- Packet hashing
- SSL
- Authenticated requests

How do you authenticate with your own
servers? How do you identify a user on
signin? You can either federate with
another system (for example, on Steam,
any player of your game has an account
on their platform) or implement it
yourself. Security is scary - you don’t
want to mess this up - so I strongly
recommend using your 3rd party
platform holders as much as possible.
But there can be good reasons to have

8

your own account systems, such as API
access to 3rd party websites.

Either way, getting a user’s
authentication token can be useful in a
number of ways. If you want to store
any data for a user, such as purchases or
bans, your auth token will let you assert
that they are who they say they are. This
will make them happy if they want to see
the entitlements they have, or make
them very sad if they are banned. You
probably don’t want to check all of these
pieces of data on each request, but you’ll
find the right times to perform these
checks. For instance, you probably only
need to check a user’s ban status in a
multiplayer game if they are attempting
to matchmake.

However, authentication is a bottleneck.
If users can’t sign in, what do you do?
Do you reject all requests? Do you let
them continue with limited permissions
(say, read-only access to public data)?

This is something you need to determine
on a case by case basis, but typically,
the answer is “somebody is getting
paged”.

OAuth is a common protocol used by a
number of platforms. Twitch is a great
example:
https://dev.twitch.tv/docs/authentication
(and https://dev.twitch.tv/get-started
for samples). For Twitch, OAuth allows
users to use their Twitch credentials to
interact with the platform.

https://oauth.net/

For Hype-G, we decided to build an
authoritative server to fend off malicious
clients from the beginning. Naturally, we
simulated as much on the client-side as
we could, but we decided to verify every
action on the server by either performing
all of the work on the server or by
allowing a client to attempt an action,
see the result, and roll it back if it failed
to checksum on the server.

9

We authenticate users in our own system
using in-house accounts, but we federate
with our two released platforms - Xbox
and Steam. Because these are tied to
our own accounts, we can ban users
ourselves even if a platform holder
doesn’t want to take any action.
Likewise, if a user is malicious and is
marked as a cheater by the platform
(say, a VAC ban), we know they will be
out of our system as well.

Users’ security tokens are refreshed
every few matches, which distributes the
load on our token minting service while
still ensuring that cheaters are ejected
from our systems on a regular cadence.
We also check their ban status at the
beginning of a match. And because
Hype-G is a multiplayer-only game, we
don’t have to worry about offline users
doing anything they shouldn’t.

Our two platforms enforce that users are
on the latest version, so we don’t have

to worry about old, stale, out of date
versions. We keep both our client and
server OSS up to date and patch when
necessary.

● Microservices:

●Small responsibility per service

●Independent updates and deployments

●Independent codebases

●Lots of time spent communicating

●Potential state differences between them

● Monoliths:

●One server to rule them all

●Requires a deployment for every change

●Operations never leave the machine, simplifying
things

Clearer on when microservices and monoliths make sense

https://www.gdcvault.com/play/1024442/-Guild-Wars-
Microservices-and
http://www.dwmkerr.com/the-death-of-microservice-
madness-in-2018/

Why talk about this now? Because it's still an interesting
technical decision!

Also - When to make things microservices
eg. Does the avatar become its own service or is it in
player manager

PHOTO CREDIT
https://www.flickr.com/photos/chesswithdeath/30784946
8/
Jenga photo
https://www.flickr.com/photos/roblee/2697052/

(change: sela -> jennie)

- HYPEG "REAL EXAMPLE" -
Matchmaking/Game server breaking
down as we add more features eg
game modes, spectator

NOTE: Mention languages more
explicitly. E.G. Riot’s stack

And it’s this last point that’s really
important here, and a huge advantage of
microservices. While codebase diversity
and being able to use the right tool for
the job are attractive, they don’t drive
ROI. Whereas having the teams that own
each component empowered to release
their component independently and

frequently, within a wider release
process of course, gets stuff to players -
the new battle map, the bugfix - much
faster. But, some of you may have
spotted that the fact it’s harder to test
dependency changes makes this more
risky than in the monolith model, so you
better have some good testing in place.

Hot spots become hard because there
are hundreds of fan out requests

Wow, there are lots of teams involved
here

paging - Hint - it's not the team whose
thing broke. Example walk through when
a player doesn't get their loot box at end
of game. We realise a few things went
wrong but it was actually a write to the
PLAYER db that failed.

● Where are your hotspots? Which APIs are expensive?
What calling patterns do your callers utilize now? (What do
you expect new callers might utilize?)

● Autoscaling: add machines when traffic is heavy

● Load testing: know how your server performs at 50%, 60%,
70% utilization.
Don’t assume it scales linearly, even on a single machine.

Trying to write a load test is a good way to
communicate with your clients about what typical
and extreme call patterns look like

14

Gatling & Jmeter
Artillery

https://www.flickr.com/photos/30591976@N05/56
17460238

Spot the Hotspot!

Spot the Hotspot!

Spot the Hotspot!

Spot how EVERYTHING is a potential
hotspot!

What questions do you ask the other
team to identify this

- Hotspot ProTip:
- Know wtf the service DOES when it's

in "hotspot"/"i can't even" mode
- Have a strategy for dealing with this

- Do you fast fail
- Do you fail over
- Do you expose the failure to

players
- Who needs to know when this

happens and are they prepared?

18

- example strategies from reality

https://www.flickr.com/photos/question_everythin
g/2516118991/

Consider	utilizing	well-known	open-source	technology.
It’s	battle-tested	at	scale	already.
It’s	probably	familiar	to	future	hires.	And	your	ops	team.	
And	your	partner	teams.	Etc,	etc.
Examples:	Kafka,	Zookeeper,	 Redis,	Elasticsearch,	
Hadoop	(and	many	more).

Only	build	your	own	if	you	absolutely	have	to.
And	please	open-source	 it	so	others	can	use	it!
Make	sure	you	have	dedicated	the	appropriate	
resources	to	build	it	AND	to	maintain	it.

http://kafka.apache.org/images/apache-kafka.png
https://github.com/antirez/redis-
io/tree/master/public/images

19

https://www.elastic.co/brand
https://svn.apache.org/repos/asf/zookeeper/logo/
https://svn.apache.org/repos/asf/hadoop/logos/out_rg
b/

…these	images	need	some	cleanup,	but	you	get	the	
point

(change: jennie -> sela)

Storage	and	persistence	become	hard!
You	can’t	just	slam	the	database	on	every	request.
Requests	will	queue.
Major	point	of	failure.
Hardware	limitations	are	a	reality.

Figure	out	how	to	avoid	it	when	you	can.	Become	stateless	where	possible.
One	of	my	favorite	tricks:	some	users	can	deal	with	stale	data.	If	I	update	my	
profile,	I	want	to	see	it	immediately…but	you	might	not	need	to	see	it	update	
for	a	few	minutes.

Make	sure	you	don’t	build	yourself	into	a	corner
If	you	partition	your	data	into	10	buckets,	each	with	a	capacity	of	5tb	–what	
do	you	do	with	the	51st	tb?	Sounds	like	a	nightmare	of	a	migration...

Sometimes you don’t have a choice - you need to keep data in memory. Active
game sessions are one example; databases and caches are another. When you
need to do this, look at your technology options in the open source world. There’s
no reason to try and do this yourself. They’re well tested and it’s less you need to
support later. Likewise, don’t use the new hotness - they may be great, but you
never know if they’ll fail you at scale and you never know if you’ll be supported in
a few years. We used FoundationDB at DropForge games, and by the time I
arrived at the company Apple had already purchased them and scoured all

20

information off the internet. Great technology, but it was a pain to maintain at
that point.

If	we	want	a	story…

At	DropForgegames	(Wargaming),	we	used	FoundationDB as	our	data	store	– and	continued	to	use	it	
once	it	was	purchased	and	scoured	from	the	internet.	We	discovered	scaling	issues	with	our	usage	
right	before	Smash	Squad	came	out.	We	mitigated	with	hardware,	but	we	determined	a	need	for	a	
new	data	storage	for	our	next	project.	Because	we	wanted	the	opportunity	to	reuse	user	data,	we	
were	looking	at	a	painful	migration	(potentially	in-place	if	we	hit	a	high	scale	on	this	title),	and	a	need	
to	slot	in	a	new	data	store	based	on	assumptions	made	for	the	previous	data	store.	We	considered	
many	options,	but	opted	to	move	toward	a	more	general	solution	(DynamoDB)	for	general	data	to	
keep	the	data	layer	as	simple	as	possible	if	we	wanted	to	switch	again	in	the	future.

Once	data	is	migrated,	the	tricky	part	is	maintaining	the	previous	behaviour(specific	transactional	
behaviour,	in	our	case)	through	a	shim.	This	is	where	a	great	test	suite	comes	in	handy...

Storage	and	persistence	become	hard!
You	can’t	just	slam	the	database	on	every	request.
Requests	will	queue.
Major	point	of	failure.
Hardware	limitations	are	a	reality.

Figure	out	how	to	avoid	it	when	you	can.	Become	stateless	where	possible.
One	of	my	favorite	tricks:	some	users	can	deal	with	stale	data.	If	I	update	my	
profile,	I	want	to	see	it	immediately…but	you	might	not	need	to	see	it	update	
for	a	few	minutes.

Make	sure	you	don’t	build	yourself	into	a	corner
If	you	partition	your	data	into	10	buckets,	each	with	a	capacity	of	5tb	–what	
do	you	do	with	the	51st	tb?	Sounds	like	a	nightmare	of	a	migration...

If	we	want	a	story…

At	DropForgegames	(Wargaming),	we	used	FoundationDB as	our	data	store	– and	continued	to	use	it	
once	it	was	purchased	and	scoured	from	the	internet.	We	discovered	scaling	issues	with	our	usage	
right	before	Smash	Squad	came	out.	We	mitigated	with	hardware,	but	we	determined	a	need	for	a	
new	data	storage	for	our	next	project.	Because	we	wanted	the	opportunity	to	reuse	user	data,	we	
were	looking	at	a	painful	migration	(potentially	in-place	if	we	hit	a	high	scale	on	this	title),	and	a	need	

21

to	slot	in	a	new	data	store	based	on	assumptions	made	for	the	previous	data	store.	We	considered	
many	options,	but	opted	to	move	toward	a	more	general	solution	(DynamoDB)	for	general	data	to	
keep	the	data	layer	as	simple	as	possible	if	we	wanted	to	switch	again	in	the	future.

Once	data	is	migrated,	the	tricky	part	is	maintaining	the	previous	behaviour(specific	transactional	
behaviour,	in	our	case)	through	a	shim.	This	is	where	a	great	test	suite	comes	in	handy...

When do you actually begin to become stateful and shard your data? We
recommend you wait as long as possible, and only do it when you don’t have
better options. Stateless servers are often easier to deal with than stateful ones.

When you start to shard your servers, you also need to think about what happens
when you add or remove a machine from service. For a stateless service, it can
just start taking traffic. For a stateful server, what else does it need to worry
about? Does it need to dynamically change the ownership of data across a
cluster? Does it need to wait for all open connections to drain - on a service that
handles 30 minute game sessions? These are all things you need to plan around.

Stateful vs Stateless At Scale

Specific technology choice examples
= sharded cache

Sharding vs. stateless vs. stateful

Statefulness in the middle of a chain - repercussions

Cold starts - knock on effects

pros and cons of eg. hawt new cockroachdb vs mysql
know your costs of choosing this - training operators, hiring

memcached
hazelcast

● Sharding: When do you shard?

● Know when you need to have stateful data and when you don’t – stateless will make
your life easier.

● When you have to be stateful, look into various technologies and don’t try to do it
yourself.

● What’s the current hotness these days? DON’T USE IT

● Understand the costs of losing a machine, adding a new machine, etc.

HYPEG EXAMPLE Our curve is predictable downward curve from 128 to 1
players over time. So we can allocate game servers based on free mem etc.
UNTIL WE ADD SPECTATOR MODE!! Interesting games mean people jump in to
watch!

Let’s take a look at what we decided to
keep stateful and/or sharded in Hype-G.

First, our game servers are stateful for
the length of a match. All users in a
match connect to the same machine.
Matchmaking is run from the same
machine, so it happens to be stateful as
well. This lets us turn a match into a
game as soon as the required number of
users is present.

We have other stateful services, too. Our
PubSub service is stateful, allowing
players to remain connected to get
information. So are our replay services,
like our spectator distribution service.
This allows us to fan data out to multiple
consumers, so we want to maintain the
data processing on specific servers.

Our databases are all sharded. We can
shard the player accounts database by
region, or by bucket hashing, or by alpha
key. We need to keep in mind the
relationships between our databases, too
- if we shard player accounts in a specific
way, we need to make sure anything
(such as player entitlements) keyed on
data in player accounts is sharded in the
same way. However, data such as our
catalog can be global.

● Case Study Example

● match is stateful

● player accounts DB is sharded by region

● we could have sharded by alpha key
prefix

● or constant bucket hashing

● in game avatar (2D) in a cache

Stateful vs Stateless At Scale

Specific technology choice examples
= sharded cache

Sharding vs. stateless vs. stateful

Statefulness in the middle of a chain -
repercussions

Cold starts - knock on effects

pros and cons of eg. hawt new
cockroachdb vs mysql
know your costs of choosing this -

training operators, hiring

memcached
hazelcast

How would we design the architecture
for the "Which hats can I wear" service?

Let’s take a closer look at one of these.

When we built Hype-G, we knew that
each game would only have 128 players
at max at any given time. We built our
models around how many game
instances could run on a given piece of
hardware based on these numbers,
allowing us to budget per-player for
things like memory usage, CPU,
connections, etc on the server.

24

But then we added spectator mode.

Interesting games mean that people
want to jump in to watch. We didn’t
want to limit the number of players who
could spectate a match at any given
time, so we needed to find a new way to
do this without blowing out our models.
A single machine can’t scale to a very
popular match, so we built a new service
instead.

We decided to publish spectator data to
a distribution service, allowing us to fan
the data out to as many clients as
desired and as many servers as needed,
without requiring everybody to connect
to a single stateful machine. 100,000
viewers on a single match? No problem.
This also minimized additional network
stress on our game instances, allowing
active players to have the best
experience possible.

As a side benefit, it’s allowed us to ingest
additional business intelligence on our
matches that we didn’t want to do in
real-time on our game instances. Win-
win!

HYPEG EXAMPLE Our curve is
predictable downward curve from 128 to
1 players over time. So we can allocate
game servers based on free mem etc.
UNTIL WE ADD SPECTATOR MODE!!
Interesting games mean people jump in
to watch!

Become	customer	focused
Every	edge	case	and	every	mistake	affects	players.

If	they	can’t	sign	in,	they	can’t	play	or	pay.
Every	piece	of	friction	causes	players	to	
permanently	drop	off.

At	10000	requests	per	second,	a	one	in	a	million	issue	
will	happen	on	average	every	two	minutes.

Hardware	and	software	failure	becomes	a	problem
QA,	QA,	QA.	Test	early	and	often.	Run	through	staging	
environments.
DDOS	protection	and	rate	limiting	become	key.

You	*will*	be	attacked	and	DDOSed.	 The	
question	is	not	“how	do	you	stop	it?”.	The	

25

question	is	“how	do	you	mitigate	it?”
Track	requests	per	user,	per	client,	etc and	reject	
them	early	and	often.	The	ability	to	allow	only	x	
requests	per	api key,	or	client,	in	a	time	window	
is	key.	(And	you	can	grant	extra	requests	to	well-
vetted	customers	like	partners)

Image:	https://cdn.cultofmac.com/wp-
content/uploads/2016/09/160927142551-
samsung-note-7-fire-1-780x439-780x439.jpg

Slide	theme:	“The	human	element”	aka	“it’s	too	complicated”

Infrastructure	size:	more	Mastiff	than	Chihuahua
One	engineer	cannot	hold	it	all	in	her	head	anymore.
Live	service	debugging	becomes	more	and	more	
challenging.

Communication	becomes	key.
Standards,	processes,	and	communication	are	
necessary.
You	might	even	have	to	deal	with	cross-organizational	
politics.

Live	site	debugging	becomes	difficult.
Common	tooling	and	dashboards	can	help.

26

Image:	http://i.imgur.com/JZuLqhy.jpg

(change: sela -> jennie)

https://memegenerator.net/img/instanc
es/65215366/take-the-bits-from-here-
and-put-them-over-there.jpg

● Run servers side by side!
● Make sure your architecture and assumptions can

handle this. e.g. service discovery version filtering
● You can beta test!
● You can test in production!
● You can do zero downtime deployments!
● Costs more but way way less risky than bad code

everywhere
● Version strategy - Semver, Patch Commit
● Example - HYPEG Game server draining
● Blue Green Deploy Strategy
● Canary Deploy Strategy
● Downtime Windows

https://www.flickr.com/photos/fwc439h/

16053132734/

● How do you safely deploy brand new services for the first
time?

● Dark Launch
● PBE
● What is your backout strategy?

https://www.flickr.com/photos/nasahqph
oto/6012071553/

● Avoid “No Turning Back” scenarios whenever possible

● Breaking database migrations are tricky

● Turning a service off can happen in stages

● If it’s retiring a service, you can deploy the replacement and
bleed over traffic

● DB migrations can be staged in many cases

● Think about schema changes and what you’re going to do
with the cache, tokens, etc. Do you invalidate everything at
once? If so, what happens?

● Deploy out of band from your client

● …because someday you’ll probably have more than
one client

● ...because it simplifies rollback

● ...because it’s not a great idea to tie them together (it
requires player updates and downtime)

● Compatibility is key

● Be able to run vCurrent and vNext at the same time,
especially if there is an API change

● New Unity? Update server, run both, update client, turn old
servers off OR Ship client that can handle both then roll
server

● Know which parts of your client update less frequently and
use gates to stop versions at the door (e.g LoL Login)

Tech deep dive into how a deploy
actually works

Explain how HYPEG does these

Tech deep dive into how a deploy
actually works

Explain how HYPEG does these

Tech deep dive into how a deploy
actually works

Explain how HYPEG does these

Tech deep dive into how a deploy
actually works

Explain how HYPEG does these

https://www.flickr.com/photos/shawnzle
a/2248316835

https://www.flickr.com/photos/2525350
6@N05/2820956884/

(change: jennie -> sela)

37

Operations

Operations is something that every engineer
should worry about. We live in a world with a
shared responsibility for production code, and
working together will resolve every incident.
Reliability also improves - instead of tossing
code over a wall, we can all pitch in and solve
problems more quickly. Nobody knows a
service better than the developer, and an Ops
team at this scale can be overwhelmed and

stretched thin by the number of services.

Not just something for “that other team”

Image credit:
https://www.flickr.com/photos/jpovey/66498106
81/in/photolist-b8C23i-68g7Yw-J6tjw-7qBgkT-
659TMp-2hnVCN-tSYn6x-amkpoG-V4pHCH-
8VAkvm-UAxoB4-CQLYA9-5bL7Ef-95juoQ-
7g9CDD-qyRehs-csgu51-4YTptG-f6KvU-
UgLoJ7-bjCAYA-bvxkYu-ntYEKM-8G9gXr-
oEYaX3-52QXpY-5EWspw-apnTwU-RCMHrv-
bVxXqw-8M91Ab-gxoNuE-ff7j82-5cSEQ4-
Kazav5-cshExo-e8VxWd-5vZkDQ-ncusiY-
95gpPe-5DFnFZ-qucnDF-aknLEV-dJsx9R-
9g55q8-oZ2qzK-ko1sxk-aJKUt6-9tJgUk-
m1vRsz

License:
https://creativecommons.org/licenses/by/2.0/
(crop, no additional changes)

One thing we can do is build tooling to ensure
that we know the status of a deployment. The
more visibility we have into it, the better. If you
identify that something is going wrong, you can
roll it back - and if you can detect it
programmatically, you can programmatically
roll it back!

It’s worth remembering that in most scenarios,
it is safer to roll things back at the first sign of
trouble and investigate out of band. If you build

39

your systems as Jennie suggested, you’ll
maintain compatibility between versions, and
this should be safe to do. Trust your gut - I’ve
left a service in production despite having a
bad feeling, and it turns out I was right.
Rebuilding the data a week later was much
more difficult than deeper investigation.

How do we know the deployment went well?
How do we know things are still going well?

https://giphy.com/gifs/rocket-landing-launch-
26DNbCqVfLJbYrXIA/download
sourced from
https://www.youtube.com/watch?v=wbSwFU6t
Y1c

If you pay attention to your metrics, you
can catch issues as early as possible.
Your service should attempt to make
health checks before it goes into service,
but health checks don’t catch everything
- especially when you are adding new
features. If it passes the health checks,
it should go into service and start to take
traffic before the next batch is taken out
of service for deployment. This is where
the customer impact can occur.

40

I tend to watch my graphs related to
outgoing and incoming traffic, as well as
any service-specific error logs. In a bad
case, I usually see one of the following
rise up (and I prefer to keep a dashboard
with all of this information visible on a
single page):

4xx responses from a dependency
5xx responses from a dependency
4xx responses from my service
5xx responses from my service
Increased internal errors (handled or
not) from my service
Increased latency on one or more APIs

These may be the source of problems or
may be a symptom. Either way,
increased failure means “cancel
deployment, roll back, pull logs off both
healthy and unhealthy machines so they
don’t get lost”.

Pro tip: rollbacks can be automated

based on these metrics, but no system is
perfect and you should always pay
attention.

It’s even better when you can use
shared infrastructure. There’s absolutely
a place for custom technology that is
designed for your needs, but there is
also a place for consistency at scale. If
you can simply correlate your outgoing
requests’ failures with the downstream
service’s failures because all of your
metrics look the same, that’s fabulous.

It’s even better if you can coordinate

41

logs through a correlation id that gets
logged in all places. A simple UUID that
can be sent as part of your request
protocol between machines is incredibly
valuable. And if every service builds and
logs them the same way, you can search
your logs in a consistent way to filter by
correlation id to see everything that
happened in a single request from the
client, merge client and server logs
together so that you can see what
happened when your request left your
service, etc.

Remember, at scale, you are receiving
so much data every second that it can be
overwhelming. Anything you can do to
reduce what you need to look at
without losing important data will save
you time during incidents.

https://www.flickr.com/photos/1549579
55@N07/34642432020/in/photolist-
UMew7G-Zq4uzR-8gGUpt-YeP2ki-
U255Sf-UgDScz-4T8sYW-dFXEU8-

8f6Xi1-q1RjWn-9YFuoz-fJdvR6-RG6r-
YeP5bP-RKhKJS-C9V5Fj-3vR3qm-
9e6Vh8-qQAUEC-qZ8Wyh-cdP8nJ-
ETK54M-c6hHDd-qguCeX-TjEnkN-
em4c2M-cdP84y-fxqLsD-qJSBuU-
9vjZqD-q58pp5-4Urum6-4DUZCM-
b5JM4x-222bPNt-AUPj1-iLAV1A-dLEVfX-
ebF9eH-f3FvTP-EBbBjm-SZPgN1-V3E5i8-
dTZxGY-cmwary-9vnZx5-f2QFar-
nT5wQW-p13gAL-oZHS8W

https://creativecommons.org/publicdom
ain/zero/1.0/

If you build dashboards around the
metrics you use to verify service health,
you can make sure that people who
aren’t you can tell if something bad is
happening to the service. The simpler
you can make a view, the better -
remember that somebody is probably
looking at a service they don’t know at
2:00 in the morning, and they’re
probably very unhappy about it.

42

Remember, the more consistent your
graphs are across your entire
organization, the better off everybody
will be in the end. Graphs
incomprehensible to other teams take
longer to react to, until you get
overwhelmed. Just like Cat Sorter VR.

When we tried to roll out our latest
changes to Hype-G, we saw unusual
behavior. After the first batch of
matchmaking services went back into
service, we started seeing the occasional
failed match across the cluster. Our 5xx
rate jumped up from 0.1% to 0.4%, just
underneath our threshold of 0.5% for
alerting and automated rollback.
Assuming that the 300% increase in
failure was due to the single batch, we

43

manually triggered a rollback to reduce
customer impact ASAP (even though the
cluster would likely alert and cancel
rollout as the next batch came into
service). As we investigated the failures,
we discovered a new edge case triggered
by certain customers in production
traffic, and we added appropriate testing
to cover these cases.

● Talk about chaos of different boxes
● Languages, datacenters/locations, frameworks,

libraries...
● It becomes a technical alignment problem

● Callback to microservice advantages/disadvantages -
CHAOS CHAOS

(change: sela -> jennie)

● Empower other teams to help you in a pinch

● How do you work with and empower a
NOC?

● How about SREs?

● High-level service dashboards help with “at-a-
glance” info.

● When 5xxs spike and request count
shoots up, what is happening?

●Retries on failure.

● Helps non-service-owners triage quickly

SME Escalation Path - Who gets paged??

WHAT IF YOU ARE NOT THE OPERATOR eg
China

Design everything as if you will be using it at
3am on a saturday night

Runbooks - Pros and Cons
- difference between runbooks and

identifying the actual cause of the issue
- alternatives to runbooks - automation,

guidebooks
- how to diagnose and escalate
- up to date (HA)

● Investing in operations during
development will pay off down the road
● Log as much as you can

● Track as many metrics as possible

● Provide health checks for at-a-glance
status checking

● Be a good "customer" of the
ops/NOC!

● mention the types of 1 in a million
events - HW failure, etc

At 10,000 requests per second,
a one in a million issue will happen,
on average, every two minutes.

(120 seconds * 10,000 rps = 1,200,000 requests)

● For non-server engineers: we hope you learned something about the inside of your
servies

● For server engineers, we hope this makes sense and you learned something new
about scale. If you think we missed something, we’d love to hear from you after this
because we’d love to learn. We’re all in this together.

THIS IS NOT GOSPEL TRUTH.

● Architecture

● 101: Client-Server Patterns

● 201: Preparing For Scale

● 301: 100M DAU? NP

● Deployment

● 101: Getting Bits on Atoms

● 201: Global Simultaneous Rolling Zero-Downtime Deploys, Oh My

● Operations

● 101: Instrumentation and Triage

● 201: Operations At Scale

48

This	provides	a	framework	for	the	speakers	to	own	various	sections.

https://www.flickr.com/photos/dancedancedancephotography/3356807821/

(change: jennie -> sela)

https://www.flickr.com/photos/henryblo
omfield/12680815144/

