infinity ward

Shipping Call of Duty at Infinity Ward
Paul Haile — Production Manager — paulh@infinityward.com

y@TyraeI

© 2018 Activision Publishing, Inc.

mailto:paulh@infinityward.com

Gall of Duty - 2016

GALI'DUTY

INFINITE WARFARE

infinily ward

shipping Gall of Duty: Infinite Warfare
Agenda

What is ‘Compass’?
Automated Testing and Profiling for 'Call of Duty’ by Jan van Valburg
Thursday 10:00 am @ Room 2006, West Hall

Code/Feature Releases

The smaller, internal case.

Shipping Milestones

The larger, public case.

Shipping Patches

The tiny, yet surprisingly complex case.

infinily ward

Protect developers from volatility
Cadence of feature drops

Goals:
Well tested
Atomic

Includes all prior changes / never go backwards

infinily ward

Evolution of Gode Releases

CALEDUTY GALLDUTY GALLDUTY

2 STS INFINITE WARFARE
‘Dibs’ system Hybrid approach Fully branched
Simple / Easy Added formal QA Compass assisted
Scaled poorly Half solution Full solution

infinily ward

Gode Release Diagram

Additional Fixes
(as needed, for stabilization)

Compass Managed
Auto-Integrations

infinily ward

summary on Gode Releases

Reliably release code minimum of 3 times per week

Instability/breakages still happen but are generally minor

“Hotfix” pipeline is key to get single fixes out quickly

Review test plan often to add problem areas

Remove unnecessary tests to keep QA time down and focused on most important areas

Increased velocity of feature releases, and also improved stability

infinily ward

shipping Milestones

Building on the foundation of our code release process

Created a reusable stream structure that represents the flow of a milestone from
development to live

Entirely production driven

Goals
Parallel Development
Enable developers to ‘always be submitting’

Be able to recreate or modify any milestone build

infinily ward

Release Stream Diagram

-—
Daily Build
Integrations

4
infinily ward

Nightly Build Process

Developers tag their changelists with a milestone when checking in to P4
For example “[Title Update 5]” or “[DLC 2]’

Determine what needs integration (‘p4 interchanges’ report)

Production does integrations and triggers the build when the state of the branch is
correct

Compass handles everything else

infinily ward

Things To Watch Out For

Exclusive Lock files

P4 copy Is awkward

Ended up with the mergeany flag on all streams

Production team education
Merge conflicts

P4 server scalability

infinily ward

PA Server Specs

Commit Server:

Virtual Machine
16 CPUs @ 2.4 Ghz / 64 GB RAM
Nimble Array 5TB flash cache + 30TB Storage

2x Replicas (1 for users, 1 for compass):
2x Xeon E5-2630s @ 2.2 Ghz / 256 GB RAM
16TB SSD Storage RAID 10 (10 TB Usable Space)

Networking

40Gb Links between all internal servers + backing storage

7 full streams at peak production, 700,000+ files each - No performance issues

infinily ward

onflict Resolution Tool

[N Integration Resolver = O X

Integration:

Resolution File Flagged Action Original Incoming

Last User
Eiln\h‘!ul"game;l"l:nirlul'install-l’pc..l’l-rcuadist..l'\.l'sz'[l‘l '.n";l"«’C_ledist.)fﬁél.a(eE iw-aweldon (05 Dec 12:23 PM] | i main-staging #1 (binary+510wx, branch) | main-staging #1 (binary+510

mond iw-aweldon (05 Dec 12: W) integrate main-staging #1 (binary+5 branch) main-staging #1 (binary

Clear Reso
gate
y Target Path
Focus in P4y

Elph

Gonflict Resolution Tool

Simple PyQt interface over the top of a database
Allows developers to perform merges without impacting local state
Developer’s intentions are communicated from the tool to a MySQL database

On the next merge Compass reads from the database and performs the desired
actions

Developers can instantly resolve conflicts occurring in any stream anywhere

infinily ward

Patches - Oid Way

Manually curated asset whitelists

Because of this devs needed intimate build process knowledge

infinily ward

Patches - New Way

Determinism
Checksum & manifest driven patching
No changes to developer work flow

Production driven

infinily ward

Paraliel Development

Title Update 7

Bulk of
development
efforts.

DLC 1

Heavy art content
iteration, but
Isolated from TU
development.

Release

Title Update 6

QA lteration

Cherry picking
fixes as
needed.

Submission

Title Update 5

In submission
with 18t party.

Title Update 4

Hot patch
creation and
deployment.

infinily ward

Takeaways

Parallel development wins you back time when you need it most.

Achievable with a small amount of branching.

Enable Production to manage the build process.

infinily ward

Thank You!

Paul Haile — Production Manager — paulh@infinityward.com

y@TyraeI

infinily ward

mailto:paulh@infinityward.com

