GDC

Rendering Technology in 'Agents of Mayhem'

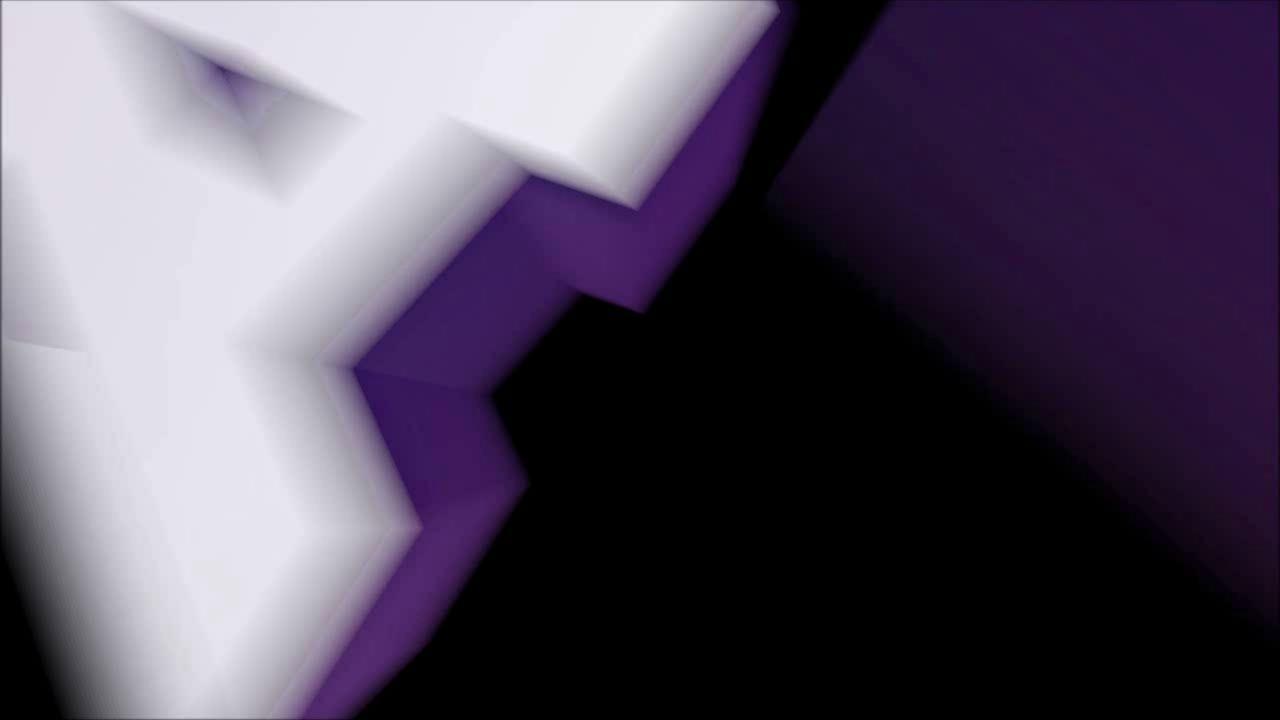
Scott Kircher Principal Programmer Core Technology Group Deep Silver Volition

UBM

GAME DEVELOPERS CONFERENCE[®] | MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 #GDC18

GDC GAME DEVELOPERS CONFERENCE[®] | MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 #GDC18

Rendering Technology in Agents of Mayhem


Scott Kircher

Who am I?

- Principal Programmer
 - Rendering Team in Volition's Core Technology Group
- Ph.D. in Computer Science from UIUC
- Nearly Eleven years of experience at Volition

Agents of Mayhem

Open World City

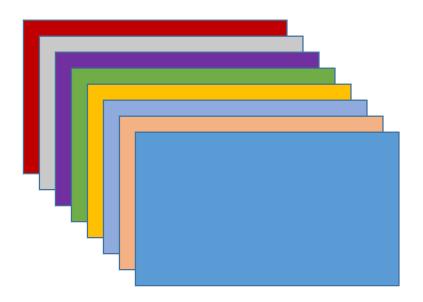
Third-person Action

Stylized Art with Physically Based Rendering

Tons of Particles & Alpha Meshes

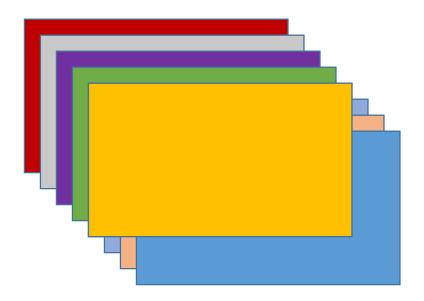
Topics

- Order Independent Transparency
 - Modifications to Weighted Blended
 OIT [McGuire2013]
- Lighting Compute
 - Features and Optimization
- Global Illumination
 - Better Occlusion for Light Propagation Volumes [Kaplanyan2010]

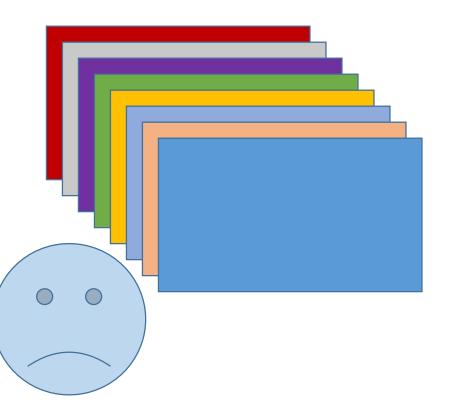


Order Independent Inansparency

SECU


Rationale

- All previous Volition games:
 - Traditional back-to-front CPU sorted alpha


Rationale

- All previous Volition games:
 - Traditional back-to-front CPU sorted alpha
- Lots of sorted alpha means:
 - Inefficient CPU rendering
 - Per "object" sorting, not per-pixel
 - Sort "popping"
 - Low-res alpha doesn't sort with high-res

Rationale

- All previous Volition games:
 - Traditional back-to-front CPU sorted alpha
- Lots of sorted alpha means:
 - Inefficient CPU rendering
 - Per "object" sorting, not per-pixel
 - Sort "popping"
 - Low-res alpha doesn't sort with high-res
- Solution: OIT?
 - Many OIT techniques inefficient on GPU

Weighted-Blended OIT

G

• Enter McGuire & Bavoil [McGuire2013, McGuire2015]

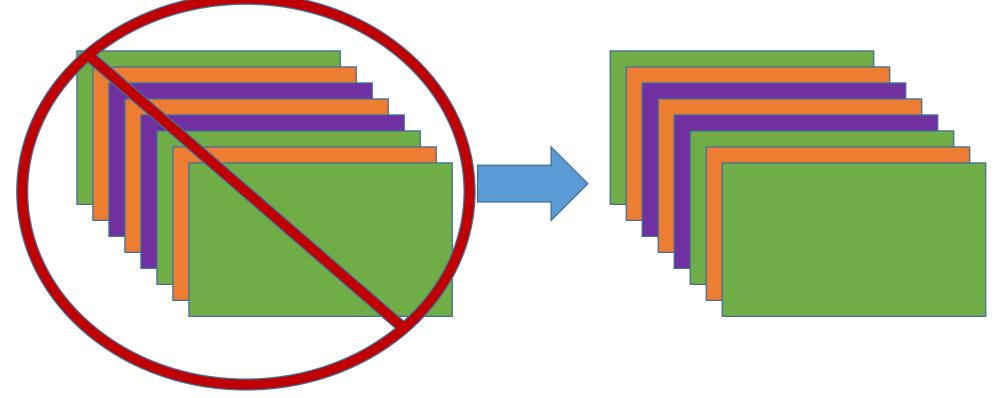
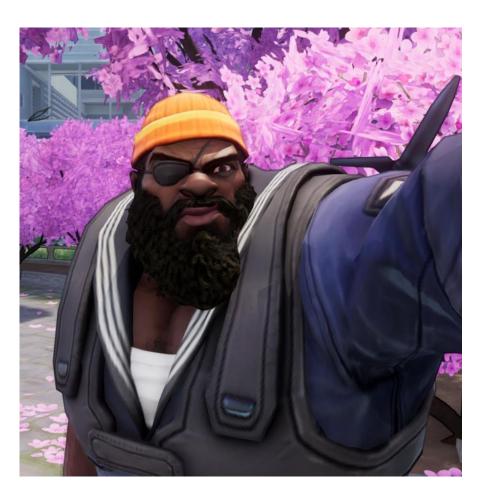


Image from [McGuire2013]

Weighted-Blended OIT Pros

"Negative" CPU cost

• Can now sort alpha by render state (i.e. material/shader) instead of depth


Weighted-Blended OIT Pros

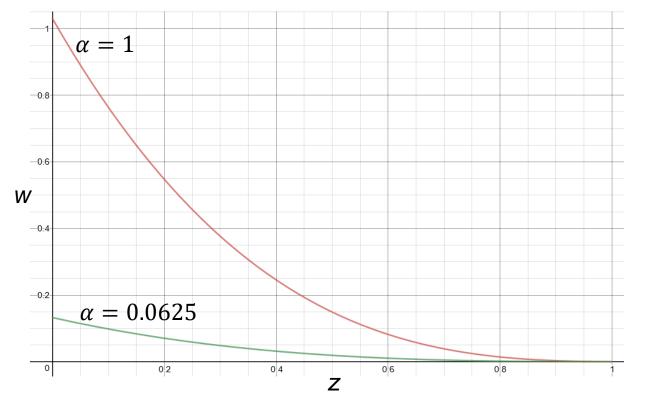
- "Negative" CPU cost
 - · Can now sort alpha by state instead of depth
- Efficient on GPU
 - Some math added to alpha shaders
 - Simple full-screen composite step
- Low-res and high-res alpha "sort" seamlessly
- No popping, ever.
 - "Sort" issues transition smoothly
- Simple?
 - No. But close enough.

Weighted-Blended OIT Cons

- MAGIC NUMBERS EVERYWHERE
- Very opaque alpha behaves badly
- Always "wrong"
 - (But not wrong enough!)

How WBOIT Works (McGuire)

• Replace ordered blending with weighted average


$$C = \frac{\sum S_n \alpha_n w_n}{\sum w_n} \qquad R = \prod (1 - \alpha_n)$$

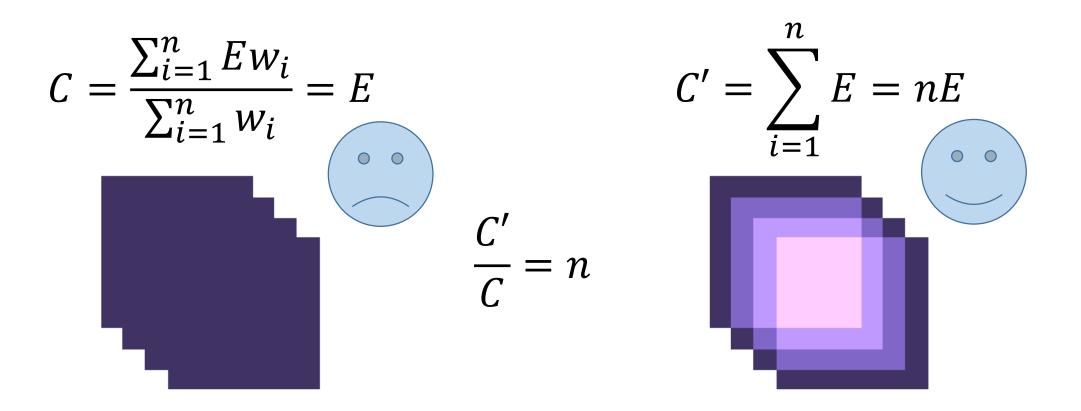
final color =
$$C + D(1 - R)$$

 $S_n = Output \ color \ of \ fragment$ $\alpha_n = Output \ opacity \ of \ fragment$ $w_n = WBOIT \ weight \ of \ fragment$ $D = Existing \ color \ in \ destination \ buffer$

Weighting Function (McGuire)

- Weights are the "magic"
- Weight high-coverage things more
- Weight near things more

 $a = \min(8\alpha, 1) + 0.01$ b = 1 - 0.95z


$$w = f(a^3, b^3)$$
 [McGuire2015]

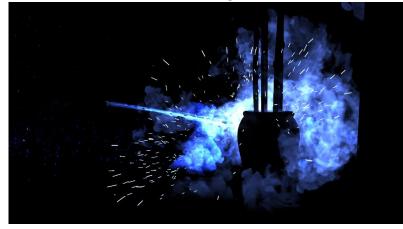
Where *f* rescales/clamps *w* for precision

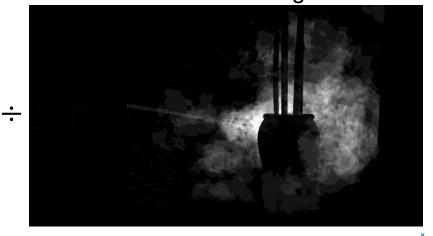
Emissive Alpha – Major Problem

Intuition

Consider n layers of the same emissive alpha value E

Main Idea


- Accumulate additional information
 - "Additiveness" ≈ Number of additive layers
- Amplify weighted average by additiveness


GAME DEVELOPERS CONFERENCE[®] | MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 #GDC18

Visual Summary of New WBOIT

Accumulated weighted colors

Accumulated weights

Additiveness

Blended via

Revealage

GOC GAME DEVELOPERS CONFERENCE[®] | MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 #GDC18

WBOIT Formulas + Additiveness

- $R = \left| \left(1 \alpha_n \right) \right|$ Revealage remains the same $=\frac{\sum(S_n\alpha_n+E_n)w_n}{\sum w_n}$ • Color is the same • But with emissive explicitly identified $A = \sum \min(10 \cdot \lim(E_n), 1)$ Additiveness is new Arbitrary sensitivity constant $S_n = Output non - emissive color of fragment$ $\alpha_n = Output opacity of fragment$ $E_n = Output \ emissive \ color \ of \ fragment$
- $w_n = WBOIT$ weight of fragment

New WBOIT Composite

- Additiveness amplifies weighted average color
 - But needs to be mitigated for mixed emissive/non-emissive

Reduces additiveness in areas of high opacity (low revealage)

$$A' = \left(\frac{A}{4}(1-R) + A \cdot R\right) + \min(2(1-R), 1)$$
Prevents darkening in absence of emissive

A = Accumulated additiveness R = Accumulated revealage C = Weighted average of colors D = Color in destination buffer

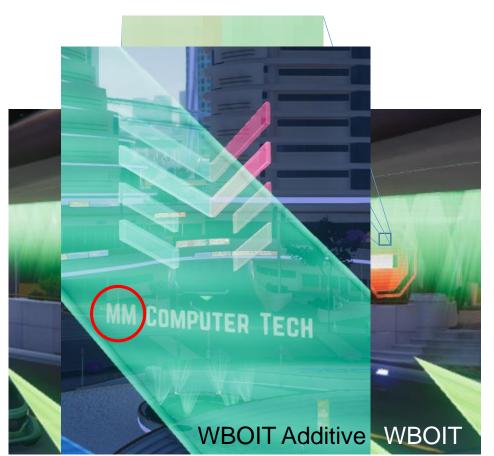
final color =
$$(A')C + D(1 - R)$$

Weighting Function and Emissive

- Purely emissive alpha has zero opacity
- Must include emissive in computation of weight
- Must allow weight to go to zero

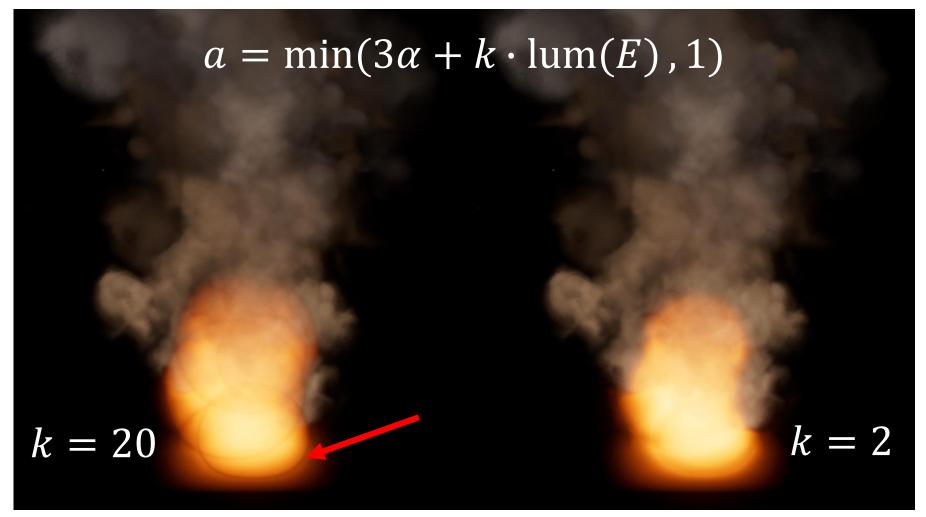
$$a = \min(8\alpha, 1) + 0.01 \begin{cases} k = 2 & \text{Particles} \\ k = ? \\ k = 20 & \text{Alpha Meshes} \end{cases}$$
$$w = f(a^3, b^3)$$

α = Opacity of fragment
E = Emissive color of fragment
k = New emissiveness weighting sensitivity

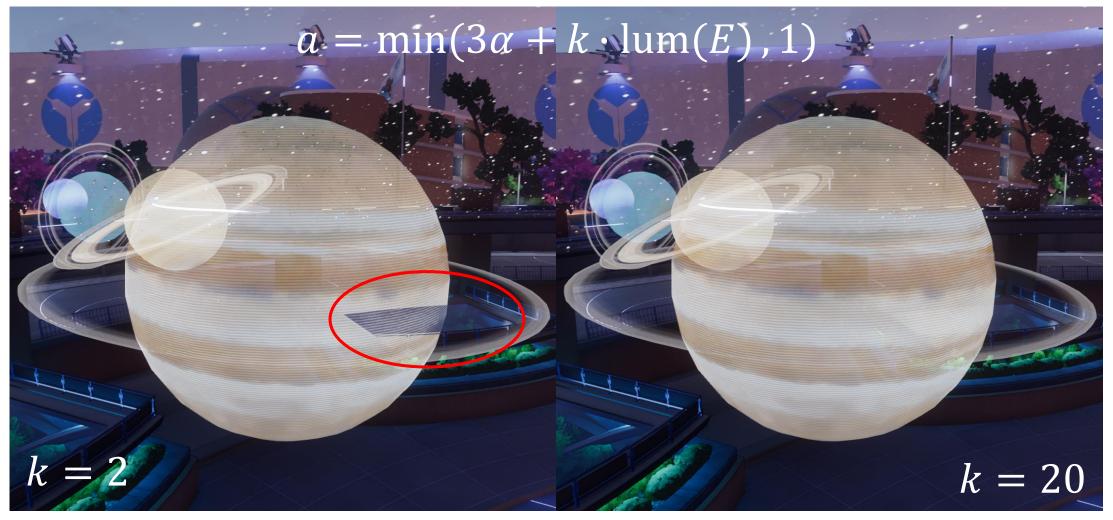

Other WBOIT Issues

And how we dealt with them

Color Dominance

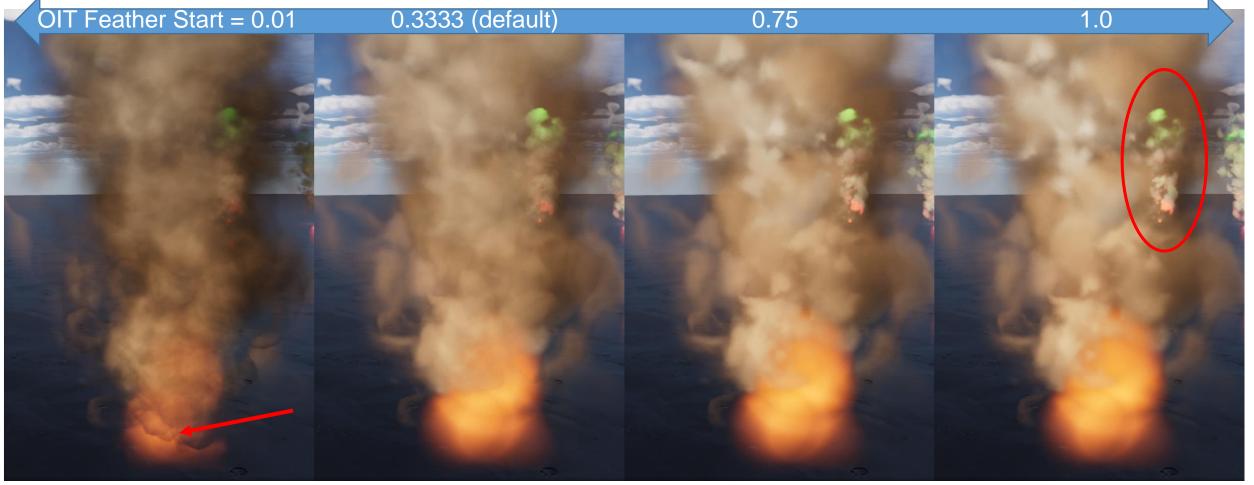

- Side-effect of WBOIT with Additiveness
 - Luminance is adjusted, but hue dominated by foreground layers
 - Our artists actually *liked* this

Dark Halos


• High "sensitivity" to opacity or emissivity produces these

Punch Through

GU


• Low "sensitivity" with dim emissive can produce punch-through

GDC

Halo vs. Punch Through Control

 $k = \frac{Camera\ Exposure}{OIT\ Feather\ Start}$

Depth Range

- To avoid retuning, convert depth to a canonical range
- We chose near = 0.5m, far = 300m
- Also, we allow b to go to zero
 - We have an alternate method of dealing with very low weights

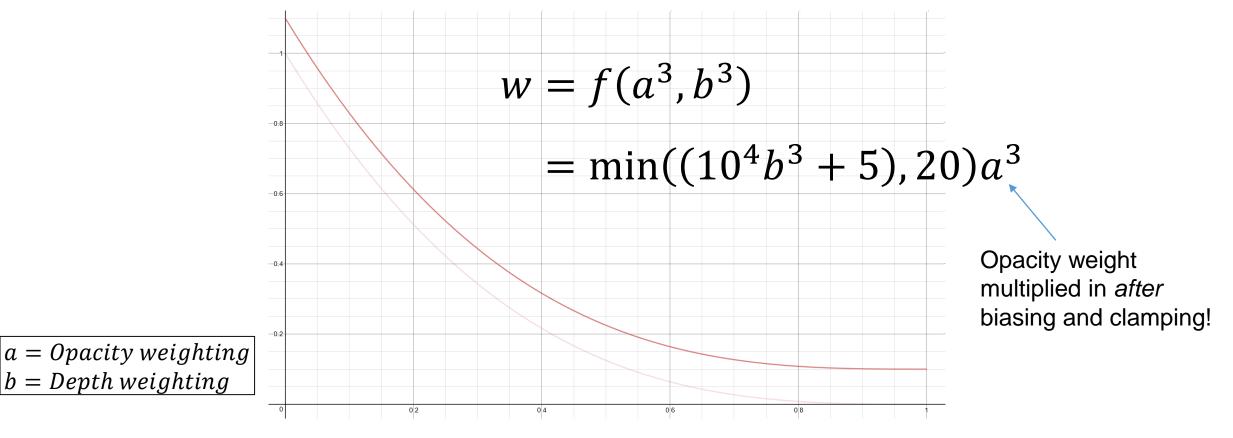
$$z' = \text{saturate} \left(\frac{F}{F - N} - \frac{F \cdot N}{d(F - N)} \right) \qquad N = 0.5$$

$$b = 1 - z'$$

$$W = f(a^3, b^3)$$

Weight Biasing/Clamping

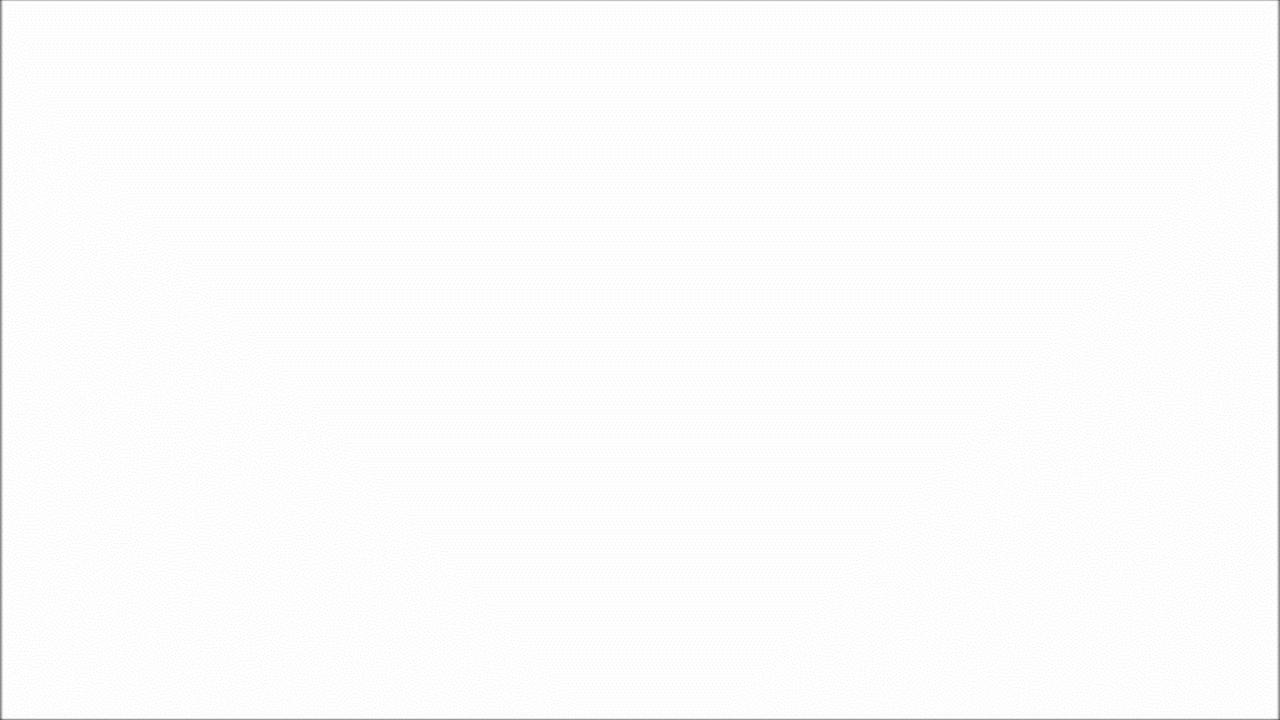
- FP16 Precision is an issue. Solved already [McGuire2013,2015]
- Large variance in weights between near and far alpha is bad.


```
w = f(a^3, b^3)
= min(10<sup>4</sup>a<sup>3</sup>b<sup>3</sup>, 300)
```

a = Opacity weighting factor b = Depth weighting factor

Better Weight Biasing/Clamping

- Can't just introduce big clamp at low end
 - · Lose depth sorting when weights are clamped
 - Instead, shift weights up (only depth-related portion)



Implementation

- Simple 2-target MRT setup.
 - Second MRT stores Revealage in Red and Additiveness in Alpha
 - Use separate blending control for alpha channel

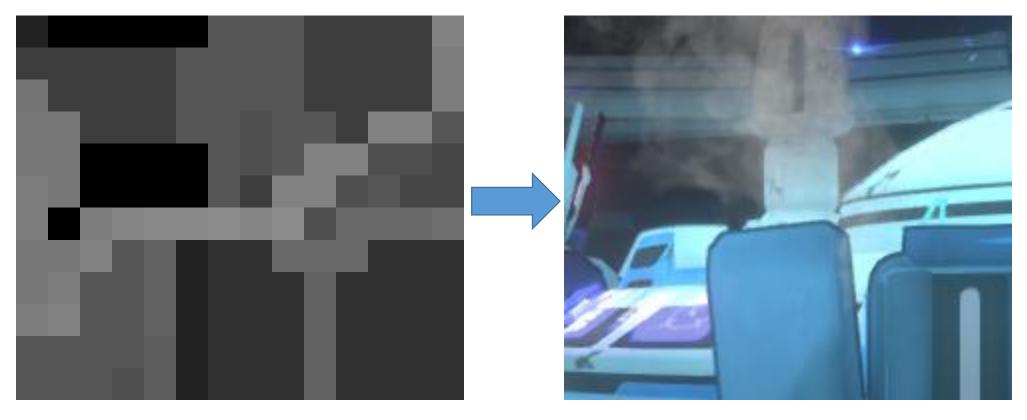
- See Appendix for more details
 - Shader Source Code
 - CMASK Optimization

Lighting Compute

ARTISTICS AND A

GDC

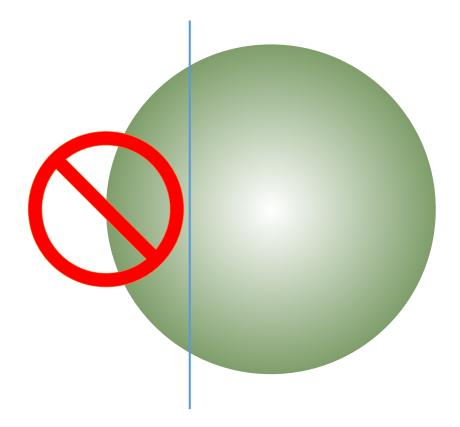
Tile-Based Lighting Compute


GU

Tile-Based Lighting Compute

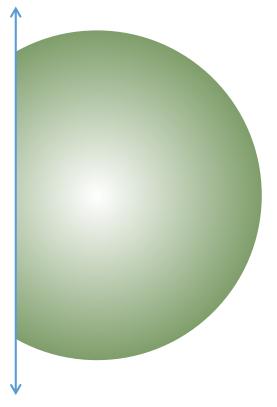
Tile-Based Shading Review

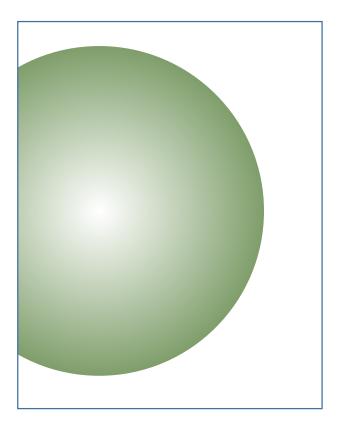
- Compute shader culls lights to tiles (groupshared list per tile)
- Then shades pixels in tile per those light lists



Features

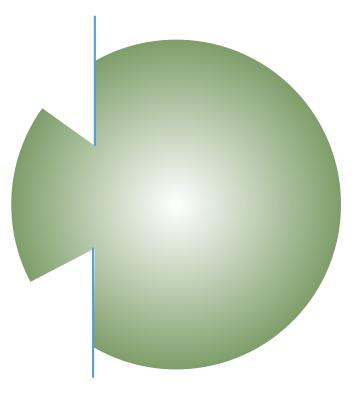
- Lots of (expensive) lighting features implemented
 - Multiple lighting models (all PBR)
 - PCF shadows
 - Variable penumbra shadows (PCSS)
 - Projected textures
 - Textured-emitter area lights
 - Omni lights
 - "Realistic" tube lights
 - Square or round spot lights
 - Darks (negative lights)
 - Light clip planes
 - Light blockers & portals


Light Leaking


• Familiar problem

Light Leaking

• Familiar problem, standard solutions



Infinite clip planes

Stencil clip meshes

Light Blockers

• Finite light clip planes

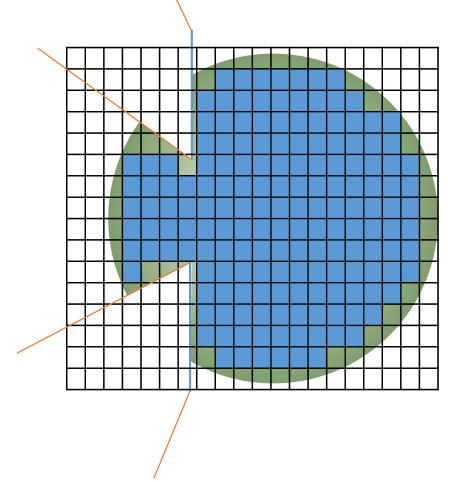
In Game Example

No light blockers

In Game Example

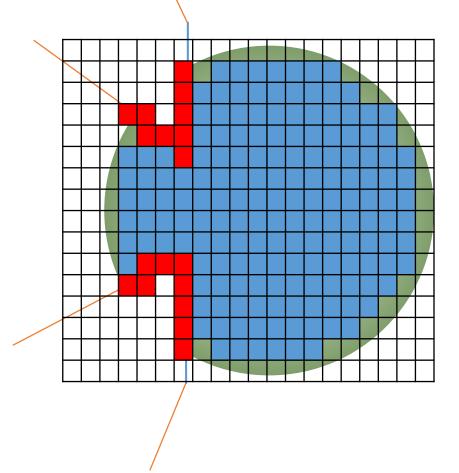
With light blockers

Why Not Shadow Casters?


Too many lights, some don't even support shadows

Light Blocker Setup

How It Works


Gl

Cull tiles against blocker "shadow" frustums

How It Works

• List blockers requiring per-pixel checks for each light

Returning To This Example

For a moment

= Too many lights per tile = Too many (light,blocker) pairs per tile (total, not just per-pixel) = Too many (light,portal) pairs per tile (total, not just per-pixel)

Blocker Tile Culling

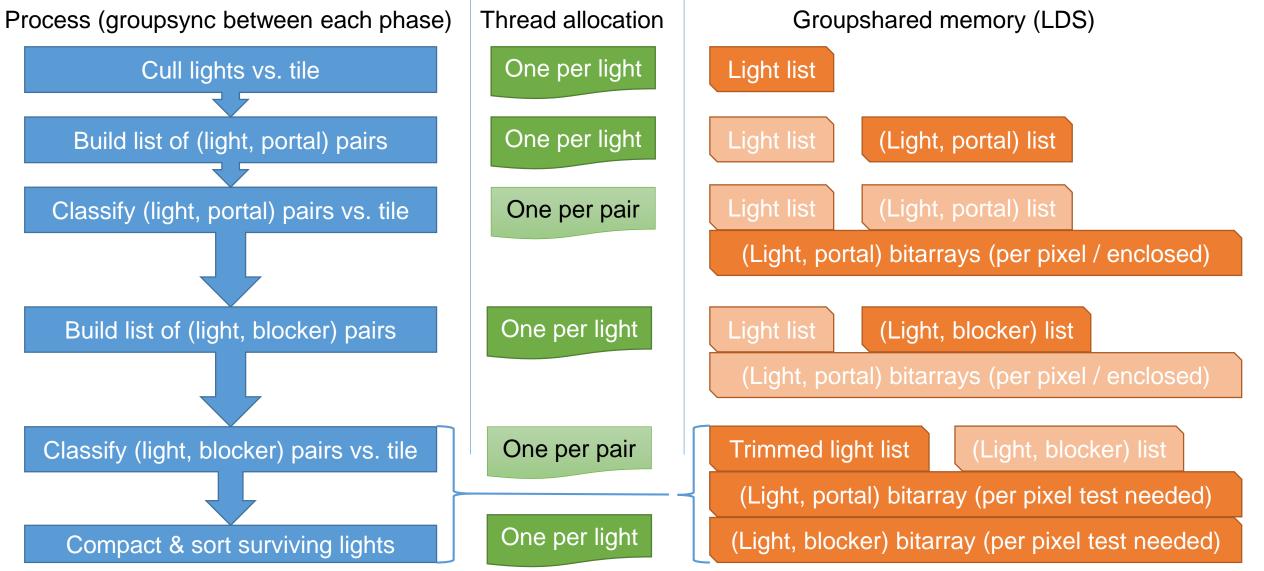
Light blockers off

= Too many lights per tile

= Too many (light,blocker) pairs per tile (total, not just per-pixel) = Too many (light,portal) pairs per tile (total, not just per-pixel)

Blocker Tile Culling

• Light blockers on


Blocker Tile Culling

• Tiles requiring per pixel checks

One threadgroup (256 threads) = one 16x16 pixel tile

Implementation

GAME DEVELOPERS

Feature Spectra

Lighting Compute Optimization

Remember That Feature List?

- Lots of features means lots of register usage
 - More registers per thread = less threads per shader unit
- Naïve implementation = BAD occupancy

GPU		
Shader Engine 0		
 Compute Unit 0 SIMD 0 Wavefront 0 Wavefront 1 Wavefront 2 Wavefront 3 Wavefront 4 Wavefront 4 Wavefront 5 Wavefront 6 Wavefront 7 Wavefront 8 		
Wavefront 9 ▷ SIMD 1 ▷ SIMD 2 ▷ SIMD 3		
▷ Issue Any Instruc ▷ Issue VALU	[01.41]	and the second state of th
 Issue VALO Issue VMEM read/w 	[01]	
▷ Issue SALU	[01]	
▷ Issue SMEM	[01]	
▷ Issue EXP	[01]	
Issue Branch	[01]	

Main Idea

Break shader into culling phase + different combinations of features
Select feature set (or *spectrum*) based on needs, *per tile*Culling phase determines what shader to use for each tile

FEELURS DEGLE

Shader Modes

Selected from feature spectra

NESEGRENCE FERUNES DEGUR

44

	NII Tile Features: Blockers	╶╂╶╁╶┼╶┼╶┼╴┼╢╢╢╢┧┶╶┧╶┧╖╢╢┨┨╢		
	Shadows Soft Shadows	┍╊┍╊┍╊┥╆┥╆┥╆┥╆┥╊╡╊╬╊╋╋╋╋╋╋╋╋╋╋╋╋╋		
	Soft Shadows Square Spot Lights			
	Square spor rights		╶╶╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴┍┍┍┍╖╖╖╖╖╖╖╻╻╻ ╶	
		╷╫╜╫╫╫ <mark>╜╴┇┊┇┇┇┇┇┇┇┇┇┇┇┇┇</mark> ┇		
<u>────────────────────────────────────</u>	╶┲╺┲╺┲╺┲╺┲╺┲╺┲╺┲	╫╫╫╫┼┼╂┼╂╂╂╂╂╂╂╂╂╂╂╂╂		
	╶┼╶┼╶┼╶┼╶┼╶┼╶┼╶┼╶┼╴╢╢╢╢╢╢╢	╎╢╢╜╜┼┼╏┼╏╏╏╏╏╏╏╏╏╏╏╏		
	╶╁┼┼┼┼┼┼┼┼┼┼┼┼┼╜╜╜╜╜╜	╨╜╜┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼		
╙╨╀┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼╂╂╢╢╢╢╢╢╢┨┨╏┼┼┼┼	╶╶┦┦┦┦┦┦┦┦╏┨┦┦┦┦┦┦┤		╏┼┼┼┼┼┼┦╏╏╏╏╏╏╏╏╏╏╏╏	
	┽┼┼┼┼┼┼╏╏┼┼┼┼┼┼┼┼┼			
	┽┼┼┼┼┼┼┟╏╏╹┼┼┼┼┼┼┼┼┼			
<u>╶╶╶╶╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴</u>			╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏╏	
		ighting Compute Denformance Investigator		
		▼ Lighting Compute Performance Investigator		
		• ▼ Top Three Feature Spectra		
	2917	2917 tiles using feature spectrum: Shading mode 6. Superfluous features: Shadows		
	Port	2917 tiles using feature spectrum: Shading mode 6. Superfluous features: Shadows Portals Square Spot Lights		
			Square Spot Lights	
	215/			
	Bloc	Blockers Portals		
	Shac	Shadows Projected Textures		
		are Spot Lights	Area Lights	

1716 tiles using feature spectrum: <Nothin' Special>


▶ Force Feature Spectra Bits

Shading mode 0. Superfluous features: Shadows

Result

Shading Phase Various Tile Modes

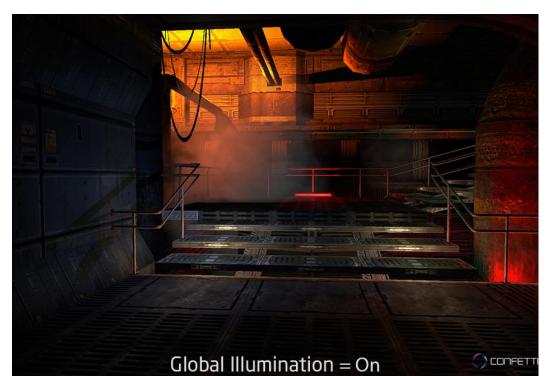
Culling Phase

Global Illumination

Light Propagation Volumes

• One of first real-time GI techniques

Crytek


[Kaplanyan2010]

LPV Middleware

• Our starting point: Aura Library from

- Heavily modified (by Volition's own Mike Flavin)
- Modifications applicable to any LPV implementation

No Global Illumination
(Direct + Occluded Skydome only)

With Global Illumination

Albedo

117102

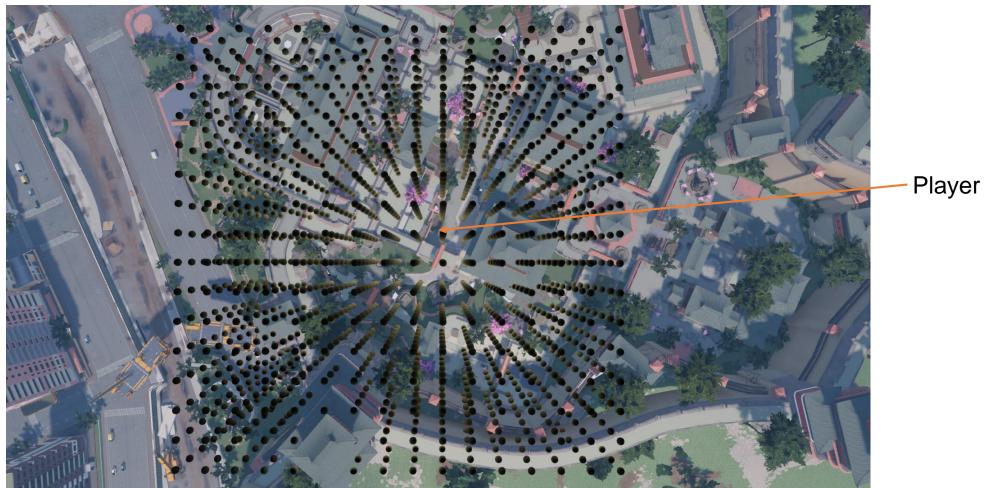
Depth

Normals

Render Reflective Shadow Maps (RSM)
Inject into LPV volumes
Propagate light through volume
Apply to scene

GD

• 3D LPV volumes store SH of radiant intensity function

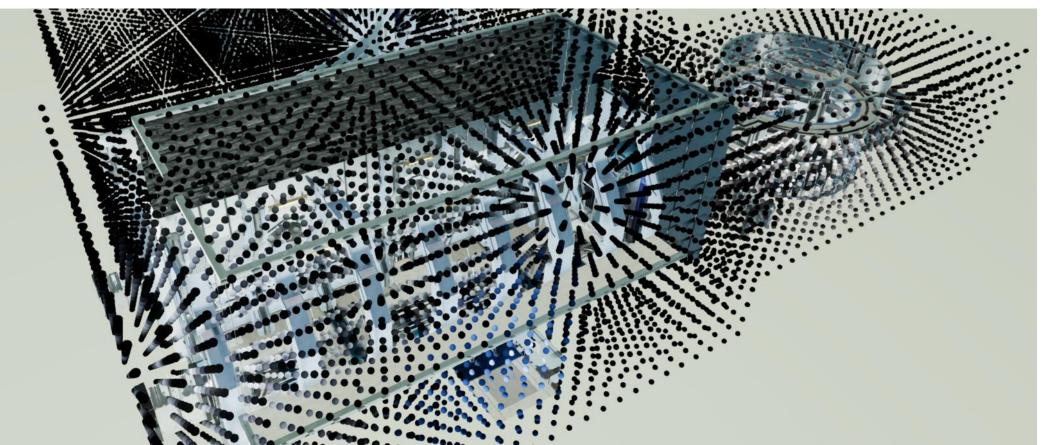


Global vs. Local Volumes

- Originally, only cascaded global volume
 - Follows camera

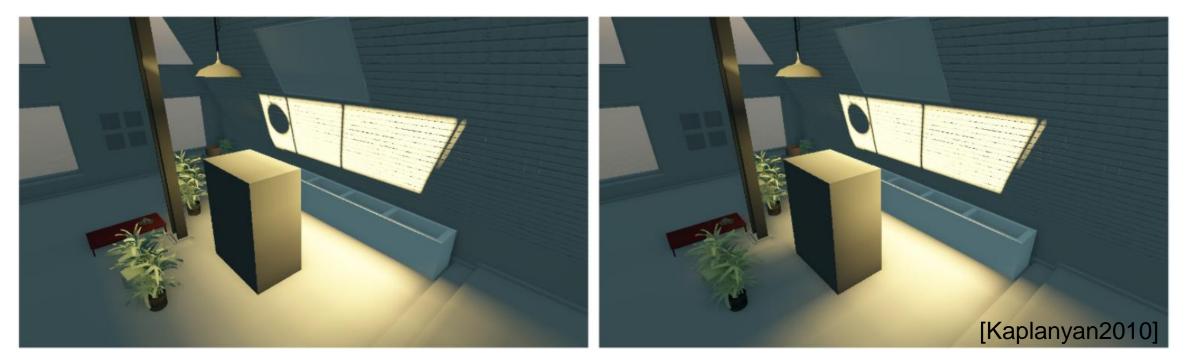
Cascade 0 Cascade 1 Cascade 2

GU



Global vs. Local Volumes

- For interiors, we found fixed local volumes worked better
 - Higher quality


GOV

• No need to inject & propagate every frame

Original LPV Occlusion

- Inject "occluders" into LPV volume from depth [Kaplanyan2010]
 - Main depth buffer
 - Auxiliary depth buffers (RSMs themselves, other shadow maps)
- Existed in original Confetti implementation

LPV Occlusion Problems

Light bleeding from coarse discretization

Missed geometry

[Kaplanyan2010]

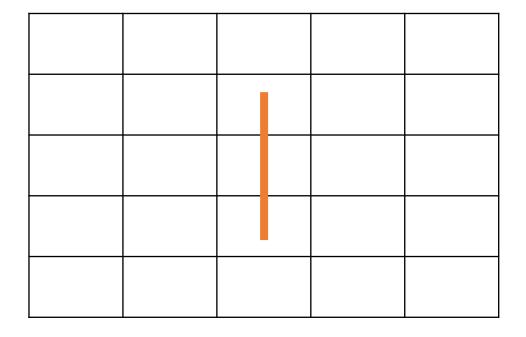
Biggest Problems:

- Inconsistent results based on view direction
- Limited artist control!

Light Blockers for LPV

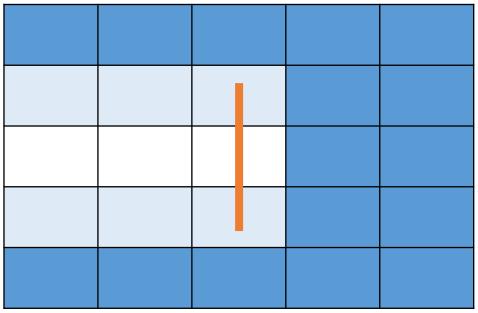
• Artists placing light blockers anyway, can use for GI too!

GI Only View • Light blockers on

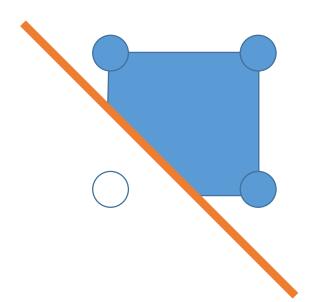

GI Only View • Light blockers off

GI Only View Light blocker placement

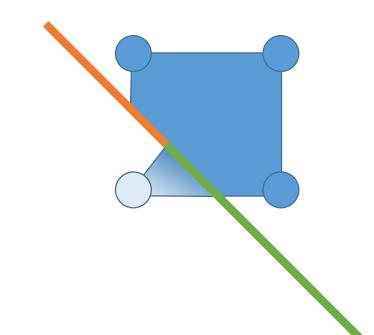
l.


Blockers During Propagation

- Light blockers injected into volume
 - Stored as "axial" occlusion (amount of occlusion along each axis)


Blockers During Propagation

- Light blockers injected into volume
 - Stored as "axial" occlusion (amount of occlusion along each axis)
- Block light during propagation
 - Produces GI "shadows"


Blockers During Apply

- Light blockers culled against 4x4x4 macro-cells
 - To reduce set of blockers considered in each LPV cell
- Block light from trilinear samples during apply
 - Eliminates light leaking from coarse grid

Light Portals for LPV

- Portals injected along with blockers as set of "holes" per blocker
- Modify axial occlusion for propagation
- Negate sample blockage in apply

Summary

 Emissive/additive support for Weighted, Blended Order Independent Transparency

Light blockers & portals for tile-based lighting methods
Feature Spectra for optimizing large tile-based deferred shading feature sets

Modifications for Light Propagation Volume based GI

- Local volumes
- Light blockers & portals

Questions?

http://www.dsvolition.com/publications/

volition

References

- Andersson, *DirectX 11 Rendering in Battlefield 3*, Game Developers Conference, 2011
 - <u>https://www.slideshare.net/DICEStudio/directx-11-rendering-in-battlefield-3</u>
- Kaplanyan, Dachsbacher, Cascaded Light Propagation Volumes for Real-Time Indirect Illumination, Proceedings of the 2010 Symposium on Interactive 3D Graphics and Games.
 - <u>http://dl.acm.org/citation.cfm?id=1730821&CFID=989089912&CFTOKEN=24284118</u>
- McGuire, Bavoil, Weighted Blended Order-Independent Transparency, Journal of Computer Graphics Techniques, vol. 2, no. 2, 2013
 - <u>http://jcgt.org/published/0002/02/09/</u>
- McGuire, Implementing Weighted, Blended Order-Independent Transparency, Blog post, 2015
 - http://casual-effects.blogspot.com/2015/03/implemented-weighted-blended-order.html

http://www.dsvolition.com/

http://www.confettispecialfx.com/

Appendix

WBOIT implementation details + shader source code

Implementation

MRT Setup

MRT0: FP16:16:16:16	Red * Weight	Green * Weight	Blue * Weight	Weight
MRT1: 8:8:8:8	Revealage	(unused)	(unused)	Additiveness

- Blend State
 - MRT0: (1)S + (1)D for all channels
 - MRT1: (0)S + (1-S)D for color channels, (1)S+(1)D for alpha channel
- Low-res and high-res alpha easily combined in composite
- See Appendix for Shader Source Code

CMASK Optimization

- Reading high-res targets can be expensive
- Fast-clear eliminate of high-res buffers also slow (~0.2ms)
- Read super-tiny CMASK buffer first and skip work if not written
 - Reduces "no-alpha" case from 0.7ms to 0.3ms on PS4

// This function is executed in alpha material shaders as the last step before writing out to the MRTs

void weighted_oit_process(out float4 accum, out float revealage, out float emissive_weight, float4 premultiplied_alpha_color, float raw_emissive_luminance, float view_depth, float current_camera_exposure)
{

const float opacity_sensitivity = 3.0; // Should be greater than 1, so that we only downweight nearly transparent things. Otherwise, everything at the same depth should get equal weight. Can be artist controlled const float weight_bias = 5.0; //Must be greater than zero. Weight bias helps prevent distant things from getting hugely lower weight than near things, as well as preventing floating point underflow const float precision_scalar = 10000.0; //adjusts where the weights fall in the floating point range, used to balance precision to combat both underflow and overflow const float maximum_weight = 20.0; //Don't weight near things more than a certain amount to both combat overflow and reduce the "overpower" effect of very near vs. very far things const float maximum_color_value = 1000.0;

const float additive_sensitivity = 10.0; //how much we amplify the emissive when deciding whether to consider this additively blended

// Exposure changes relative importance of emissive luminance (whereas it does not for opacity)
float relative_emissive_luminance = raw_emissive_luminance * current_camera_exposure;

//Emissive sensitivity is hard to pin down

//On the one hand, we want a low sensitivity so we don't get dark halos around "feathered" emissive alpha that overlap with eachother

//On the other hand, we want a high sensitivity so that dim emissive holograms don't get overly downweighted.

//We expose this to the artist to let them choose what is more important.

const float emissive_sensitivity = 1.0/<<artist controlled value between 0.01 and 1>>;

float clamped_emissive = saturate(relative_emissive_luminance);
float clamped_alpha = saturate(premultiplied_alpha_color.a);

// Intermediate terms to be cubed

// NOTE: This part differs from McGuire's sample code:

// since we're using premultiplied alpha in the composite, we want to

// keep emissive values that have low coverage weighted appropriately

// so, we'll add the emissive luminance to the alpha when computing the alpha portion of the weight

// NOTE: We also don't add a small value to a, we allow it to go all the way to zero, so that completely invisible portions do not influence the result

float a = saturate((clamped_alpha*opacity_sensitivity) + (clamped_emissive*emissive_sensitivity));

// NOTE: This differs from McGuire's sample code. In order to avoid having to tune the algorithm separately for different // near/far plane values, we produce a "canonical" depth value from the view-depth, using an fixed near plane and a tunable far plane const float canonical_near_z = 0.5; const float canonical_far_z = 300.0; float range = canonical_far_z-canonical_near_z; float canonical_depth = saturate(canonical_far_z/range - (canonical_far_z*canonical_near_z)/(view_depth*range)); float b = 1.0 - canonical_depth;

// clamp color to combat overflow (weight will be clamped too)
float3 clamped_color = min(premultiplied_alpha_color.rgb, maximum_color_value);

float w = precision_scalar * b * b * b; //basic depth based weight
w += weight_bias; //NOTE: This differs from McGuire's code. It is an alternate way to prevent underflow and limits near/far weight ratio
w = min(w, maximum_weight); //clamp by maximum weight BEFORE multiplying by opacity weight (so that we'll properly reduce near faint stuff in weight)
w *= a * a * a; //incorporate opacity weight as the last step

accum = float4(clamped_color*w, w); //NOTE: This differs from McGuire's sample code because we want to be able to handle fully additive alpha (e.g. emissive), which has a coverage of 0 (revealage of 1.0) revealage = clamped_alpha; //blend state will invert this to produce actual revealage ensitive weight = saturate(relative emissive luminance*additive sensitivity)/8.0f; //we're going to store this into an 8-bit channel, so we divide by the maximum number of additive lavers we can support

}

```
// Full-screen composite pixel shader
PS OUTPUT main ps(VS OUTPUT input)
uint3 ipos = uint3(input.pos.xy, 0);
#if (defined( PS4) || defined( XBOX3)) && defined(USE CMASK OPT)
    // skip some work for pixels that we didn't write to at all
    const bool hires_written = decoded_cmask.Load(uint3(ipos.x/4,ipos.y/4,0))!=0.0f;
#else
    const bool hires_written = true;
#endif
float revealage = 1.0;
float additiveness = 0.0;
float4 accum = float4(0.0,0.0,0.0,0.0);
// high-res alpha
[branch]
if(hires_written) {
    float4 temp = input_accum2.Load(ipos);
    revealage = temp.r;
    additiveness = temp.w;
    accum = input accum1.Load(ipos);
}
// low-res alpha
float4 temp = input accum2 subpass.SampleLevel(Sampler filter clamp, input.uv, 0);
revealage = revealage * temp.r;
additiveness = additiveness + temp.w;
accum = accum + input accum1 subpass.SampleLevel(Sampler filter clamp, input.uv, 0);
// weighted average (weights were applied during accumulation, and accum.a stores the sum of weights)
```

```
float3 average_color = accum.rgb / max(accum.a, 0.00001);
```

// Amplify based on additiveness to try and regain intensity we lost from averaging things that would formerly have been additive. // Revealage gives a rough estimate of how much "alpha stuff" there is in the pixel, allowing us to reduce the additive amplification when mixed in with non-additive float emissive_amplifier = (additiveness*8.0f); //The constant factor here must match the constant divisor in the material shaders! emissive_amplifier = lerp(emissive_amplifier*0.25, emissive_amplifier, revealage); //lessen, but do not completely remove amplification when there's opaque stuff mixed in

// Also add in the opacity (1-revealage) to account for the fact that additive + non-additive should never be darker than the non-additive by itself
emissive_amplifier += saturate((1.0-revealage)*2.0); //constant factor here is an adjustable thing to indicate how "sensitive" we should be to the presence of opaque stuff

average_color *= max(emissive_amplifier,1.0); // NOTE: We max with 1 here so that this can only amplify, never darken, the result

```
// Suppress overflow (turns INF into bright white)
if (any(isinf(accum.rgb))) {
    average_color = 100.0f;
}
PS_OUTPUT OUT;
OUT.Color0 = float4(average_color, 1.0 - revealage);
```

```
return OUT;
```

Additional Bonus Slide

Light Blockers/Portals LDS Memory Analysis for Lighting Compute

Some Rough Numbers

- Max lights per tile: 64
- Max blockers per light: 32
- Max portals per light: 32
- Max portals per blocker: 32
- Max (light,portal) or (light,blocker) pairs per tile: 256
- Groupshared (LDS) memory requirements:
 - Initial & final lights in tile: 512 bytes
 - Various (light,blocker)/(light,portal) bitarrays: 1280 bytes
 - + Other miscellaneous counts, etc...
 - Total: ~2KB (max theoretical PS4 occupancy: 8 wavefronts/SIMD)