
Welcome

We’ve been doing this talk for a number of years, check out
some of our earlier years editions – on the GDC Vault, some
on YouTube.

2

So what do we mean when we talk about rules?

Well I’ve found that some designers are not big fans of
thinking about there being any “rules” for how to design your
game.

3

My friend Daniel Cook said…

4

Eric Zimmerman, author with Katie Salen of a book called
“Rules of Play” said…

5

I think as digital game designers, when we think of rules we
think of the rules for the games we work on.

The rules in digital games are strictly enforced, because the
computer is a on-or-off device. It won’t bend the rules for
you. They are what they are.

You can’t put the Tetris piece where the game won’t let you.

6

But we move back into the analog space, we might
understand rules can be more… malleable.

Who hasn’t heard of house rules in Monopoly? The most
famous being getting all the cash for landing on Free Parking.

You might think that Chess would be fairly fixed, but then you
haven’t played with my kids who have developed their own
crazy rules about how pawns make it across the board to get
a replacement piece. When I explained to them the way the
rule is supposed to work they were uninterested.

And if anyone’s been engaged in intense Scrabble games
knows, sometimes you need to come up with some rule
variants to prevent your games from….

7

From turning into this.

Literally the picture you get when you google “Scrabble Fight”

So custom rules can keep things civil in Scrabble.

But I think the idea that the rules of a game need to be
changed to suit the players playing it starts to suggest that
the rules are more malleable than we thought.

8

And of course as we move into RPG land, a good DM will bend
the rules to maximize fun and try to get the right amount of
challenge but also let their players succeed.

The rules of D&D are modified real-time to make sure
everyone has a good time.

9

Or it can be used to artist effect, where challenging and
potentially defying the rules becomes the point of the game
and the narrative in something like Brenda Romero's Train

10

Last year, Luke Muscat subverted the objective of the session,
with his talk Forget Rules, Make Goals Your King.

(Go check it out on the Vault as well!)

11

But he used different words to describe how he felt about
them.

12

Now I gave my own version of this talk some years ago at
another conference, where I talked about what my parents,
non-game designers, taught me about game design, in how
they raised me.

I translated some of those parenting techniques into how I
think about players.

You can go watch this on YouTube if you’d like to know more.

13

But spoiler, here are the key rules I put forward at that talk.

These were things interpreted from how my parents raised
me.

14

But if I could make one addendum to that talk, it would be to
bring up something I learned about my dad.

A lifelong psychology professor, my dad passed away this past
year, and at the memorial and in the process of writing his
eulogy, I learned something my Dad used to say to his many
students that I talked to.

My father always liked to say: “Are you asking the right
question?”

15

So what does that mean? Let me give you an example from
an interaction I had with him as a kid.

My dad loved books – these are some of his favorites that I
now have.

16

When I was 10, I had asked my dad a question about the size
of planets, I think… honestly I can’t remember.

What I do remember was that a few days later my dad gave
me a book called "Powers of 10: About the Relative Size of
Things in the Universe." It took the question I had asked and
exploded it into more depth and complexity than I had ever
imagined.

17

The book focuses on looking at a single point from powers of
10 levels of magnification, to see how things fit together from
a galactic view to a subatomic one.

This book is not aimed at a 10 or 12 year old, and I remember
being confused why he gave it to me. But fortunately it had
a lot of great photographs that I liked, and I find I appreciate
it more with each passing year.

The book delved into the question I had asked… but went way
beyond. It reframed the question and opened up a bunch of
new ones.

Instead of being a “fixed” answer as a game design might be,
it made me think.

18

So that’s how I encourage you to think about the rules you
will hear here today.

I see each of the talks our speakers will give here today, as an
opportunity to expand your horizons.

To think about the work you do here as game designers from
a different perspective.

Now I must confess, my inspiration for this intro partly came
from seeing Powers of Ten reference in Soren’s talk, and
coming up soon. Erin will also ask if you are asking the right
questions of your players,

Later on, Stone will show you why he made a board game for
a movie he was too young to actually see, while Josh will tell
you why he likes to only write half a story.

but first…

19

Our first speaker is widely known for his work in online games,
going back to his work MUDs

Working on one of the first commercial MMOs in Ultima Online,
to Star Wars Galaxies

He now works as an independent designer on a wide range of
game (both digital and analog) and game-related projects…

Raph Koster!

21

So here’s an idea I’ve had more than once. (Like, literally, I’ve
made four or five games about trying to capture this idea).

22

The thing about an idea like that is that it can really go either
way – it can be about the math behind how kaleidoscopes
tumble, or it can be about the sensation of a kaleidoscope, the
human experience of it.

23

I like to say you can start from either end: have a strong idea
for a game system, a set of mathematical relationships or
dynamics; or have a strong narrative or experiential idea. In
fact, different designers will often have very different biases
towards where they start!

24

Board game designers, perhaps, start with a bias towards the
systemic end, and certainly much AAA starts with a bias
towards the experiential end. We’d never say “you can put any
skin you want on this Telltale game” and think that the
experience is intact, and we’d never say “why don’t we swap
out the conflict resolution mechanic in Poker” and think that
remains intact either.

25

Starting with either is perfectly valid, since by the time you
finish, you rather need to have both ideas solidly in place.

26

because after all, very few games are pure experiences or
purely abstract.

27

But starting from one end or another has implications, and it’s
important to move to the middle quickly.

28

Think about starting from the system. If you fail to move to
the middle, you can get stuck with an abstract game – it
might be harder to market – or with really simplistic narrative
wedged in between levels or something.

29

Finding an experience or metaphor that fits the system quickly
is a better path – though often a strong system idea can
actually be skinned in many different ways, all of which are
viable. Think of chess sets, for example.

30

If you start from a narrative or experiential idea, there are a
lot of dev pitfalls if you don’t develop a strong systemic core.
Your game is consumable, which might even happen via
Twitch. You often have to spend disproportionately on content.
You end up making tons of smaller minigames, multiplying
your design problems.

31

At heart, all of these issues have to do with the fact that it is
always possible to layer missions, narrative, and static data on
top of a simulation; it's rarely possible to go in the reverse
direction, as attempting to add rich emergent systems to a
game built mostly out of data is usually futile.

32

We often get into a development project and think that the
various disparate pieces of content will add up to something
systemic…

33

But it's rarely possible to go in the reverse direction, as
attempting to add rich emergent systems to a game built
mostly out of data is usually futile.

34

This matters because game longevity – in which I include a
bunch of stuff that drives revenue, for those of you with a
business tilt – is driven by how much “space” there is in the
game. Despite our desires as creators, a lot of the power in a
game experience comes from

35

the loss of designer control over the player experience.

36

The three critical ingredients in the core sim are:

(a) A space that just "is" an interesting mathematical or
structural landscape.

37

Examples might include physics. But also interesting
relationships between objects. The relationships between
suits, numbers, colors, and so on in a deck of cards is such a
landscape.

38

(b) Simple, consisting of few rules, though it may have room
for lots of data.

39

What generally works is a way to have lots of kinds of data
that work on top of that underlying system, and rules for how
they interact. Poker leverages the set of playing cards;
Pokemon leverages the types Pokemon and the attack types.

40

(c) No goals to the underlying sim, so that players can instead
create their own goals atop the system.

41

This doesn’t mean that you can’t have AI with its own goals,
and it doesn’t mean that the game can’t provide goals. It
means that the *system itself* doesn’t imply goals, we select
them based on narrative or experiential intent. There’s a
difference between a system that implies something like “get
to the other side” and a system that just says “here’s cool
movement physics.”

42

Some examples of how I’ve tried to leverage these principles
over the years. SWG was built entirely around real-time
procedural terrain. We generated it around you as you walked.

43

By itself that just sounds like a content tool. But it actually
opened up both emergent and narrative gameplay, because of
the tools it afforded us.

44

We could not have had players having massive Rebel vs
Imperial wars with destructible bases that could be built
anywhere without that underlying sim.

45

In Ultima Online we started out with a “resource system” that
was intended to drive all the AI. Every object was “made of”
resource types, and all AI was based on Maslow’s hierarchy of
needs.

46

We weren’t even able to ship with that AI! But it didn’t matter,
because the resource model was super powerful.

47

It unlocked everything about the crafting system, which led to
all sorts of emergent things like color-coded guild uniforms, or
player shops and economy, and then up through player-run
cities.

48

Minecraft too uses basically an underlying resource model and
simple rules to achieve all the amazing things it does.

49

Even in really small simple games, like My Vineyard, which we
did for Facebook, you can see this working. The experience,
we knew: running a vineyard. In FB games of that era, you
may recall

50

Maps expanded on all sides at once, and objects were one to a
tile.

51

We used the simple idea that if the vineyard was really yours,
you’d want to shape it, so we allowed you carve away the
forest. Island Life, our predecessor game, was actually the
first FB game to do this, we think.

52

This meant that discovery became a central idea – not just of
the map, but of new wine varietals,

53

New layout ideas. We let you place objects at pixel granularity
rather than tile, which hugely opened up the amount of play.

54

The result was maps like this – huge explosions of creativity
which we leveraged into new features such as vineyard tours

55

Which led the game to having one of the highest ROIs and
retention figures in Playdom even though it didn’t have the
same size userbase or even daily revenue numbers.

56

Even if you begin with the idea of a particular experience you
want to give players, starting out with the sim is incredibly
helpful for the eventual depth of your game.

57

So that’s my rule: if I have an experience I want to get
across, the first thing I ask myself is “how do I model this
experience mathematically?” It ends up opening many more
doors.

58

Erin Hoffman –John Is known for her work on a wide range of
“smart fun” games and is a teaching professor at Carngegie
Mellon’s Silicon Valley campus.

Previously she led design at GlassLab and she is also author of
the Chaos Knight fantasy trilogy

60

61

We all know playtesting is important, but most of us playtest with a
machete instead of a scalpel.

63

For me this was put to the most extreme test when I joined
GlassLab, which was promising to reinvent education with AAA level
game design. Working with assessment scientists from SRI and ETS
really impressed upon me the fine art that is asking questions. We
tend to think in game development that if we’re asking any
questions at all we’re on the right track, and that if we can manage
not to ask leading questions we’re doing well, but that’s pretty far
away from being sure we’re asking the RIGHT questions.

So what I want to talk about is how to ask the right questions. With
more attention to the intentionality behind the conversations we
have with players, we can uncover a whole new level of potential
specificity in our design decisions.

At GlassLab we were trying to hit an extremely small target: we had
to be able to create measurable (e.g. Testable) learning results
based on common core topics for middle schoolers.

In commercial games, we mostly try to hit this massive but awfully
vague target that is "fun". It might be "shooty fun" or "racy fun" or
"puzzley fun", but at the end of the day it's still this gross
excitement state that causes people to throw money.

(If you want to do a fun experiment, google image “people having
fun” and you can go down a deep mental rabbit hole about what we
mean when we say ‘fun’, and how, for instance, ‘people having fun’
sounds like a simple phrase but if you think about what’s going on in
each of these people’s heads, it may or may not be what we usually
think of when we think about to ourselves having ‘fun.’. [I’m a social
game designer - I think about ‘fun in groups’ a lot, where what
you’ve got on the surface is rarely representative of what’s going on
underneath.)]

and how much might they be trying to fool us if we just ask them if
they’re having fun?

Because we're accustomed to these squishy targets, we started with
SimCity and sort of assumed it was educational in and of itself. It
FEELS educational; it makes us feel smart, so we've gotta be
learning, right?

it has all these systems that make you FEEL like you’re learning -
interrelatedness, complexity, systems, unintended consequences. all
of these are built on a game state machine that facilitates your
learning about a complex system which is so close to reality that it
feels like you’re learning about reality. but you’re not.

when we started ASKING THE RIGHT QUESTIONS about what
SimCity was teaching, it popped like a bubble

and by the way this is no aspersion on simcity - what it made me
realize was that the designers of this game were freaking wizards

When we started asking questions targeted around what SimCity
was teaching, one system after another fell down. We thought we
could teach about electricity, but the power grid was all wrong (it
flows like water). Most of the intelligence of SimCity is in its
feedback, which is another way of saying what Sid Meier said about
the original SimCity: that it's great, but the computer seems to be
having all the fun. When you take apart what the player DOES in
the game -- because what you DO is how you learn, in an
interactive medium -- most of what you DO in SimCity is WATCH the
rippling effects that cascade away from a single small action. That
means any learning is taking place in the player's head, where we
can't see (or more importantly, measure) it.

In the end we had to find a scrap of truth inside of SimCity -- one of
which happens to be its environmental pollution system and its
relationship to power generation industry -- and then bill it as
environmental science plus systems thinking -- the latter of which
isn't in the common core but is a key 21st century skill. So it's called
"Pollution Challenge" and it does have environmental science
concepts in it, but mainly what it teaches is systems thinking.

Since we knew we weren’t going to be able to remake the software
from scratch — nor would we even want to, since what we were
trying to do was take advantage of what was already in SimCity —
when we started asking kids questions about how SimCity was
making them FEEL, and then aligning THAT with what was natively
inside the learning standards already, that’s when we started to get
traction. Probably the most powerful thing we ever heard from a kid
about SimCity was “this game makes me feel like my decisions
matter” — which is a really powerful thing to think about when you
take into account the inflection of surprise with which she made that
statement. Most games did not make her feel important. Powerful,
sure. Reckless, strong, destructive, imaginative, limitless — but not
important. SimCity gave that to her. That was what we had to
double down on.

Teachers love SimCityEDU -- mainly because it gives them a
situated context for their classroom, and is a huge engagement
booster, a platform upon which to teach a number of subjects -- and
it remains our top downloaded product, so we can't really call it a
failure, but from an educational standpoint, it sure felt like failure,
because although it was a great conversation piece, in and of itself it
didn't hit the standards we were targeting. We realized just how
small and narrow a target we were trying to hit, even when we
could pick any topic in the common core standards. The questions
we asked kids were revealing that, if they were learning something,
it sure wasn’t anything we could find in the common core.

For our next attempt we started with what we thought was that
narrow assumption: argumentation. And we knew we'd have to
build a game around that central concept rather than trying to bend
an existing game in its vague direction.

This time we started with a map of argumentation competency
provided by our learning designers -- and not just any competency,
but one translated into action verbs, things we could actually
simulate inside a game. This is the map, which as far as I know is
the first of its kind: a verb map that connects game actions to
learning actions, aimed at creating evidence of a player's thinking.
We started with a carefully crafted hypothesis — the whole game
was the execution of that hypothesis.

This game was built with the question at the heart of it: what is the
most important thing to teach a 6th grader about argumentation?

Then, during development, even when what we had was a crude
prototype, we TESTED whether the game was working by using a
five point quiz. It was open-ended, and of course in our early
prototypes players failed entirely, but that was good - that meant
we had found a problem to solve. As we developed, our scores on
those informal quizzes got better and better.

I want to linger on this for a minute because what we did was an
unintuitive thing when you think about commercial development,
but it strikes me as totally applicable. It had a tremendously
focusing effect that I haven’t experienced making commercial
games. Every single time we tested we were giving ourselves the
same benchmark, reminding ourselves of our goal. If for no other
reason, that’s a reason to use a custom tailored play testing quiz: to
remind YOURSELF of what you’ve set out to do. What you ask
players is what you’re going to get in your final product. If all
you’re asking them is how they can solve a puzzle, that’s all you’re
going to be developing toward.

And in the end we shipped a game that was evaluated by ETS
(Educational Testing Service, makers of the GRE and several
benchmark education tests) using a pre- and post-measure that had
already been proven to be a valid assessment of argumentation. The
result was we were able to raise a student's grade level on average
a full year of competency in a week of scaffolded play.

I'll linger on that for a minute because it's really important. If you
believe that games can teach, we unequivocally proved it -- on a
competency teachers struggle to teach. And this thing is scalable.
We might not be able to put a top quality teacher in front of every
11 year old on the planet -- but we MIGHT be able to get them a
tablet with educational software. The dream is a big one: infinitely
distributable education, the kind of thing that could lift the world.

As I return to commercial game development (because GlassLab
was a 3 year mission, which ended), the experience of that kind of
precision sticks with me. And it makes me realize how poor we are
at playtesting or measuring anything more fine grained than "would
you buy this?".

As artists this should bother us, and the truth is that our shots are
scattershot fired because our focus is wide and blurry. I've thought
about what might tighten it, and what generalizable processes could
transfer to any kind of innovative design (if you're making
something purely competitive, you can just ask "is this better than
X?" -- executing that might be just as hard, but testing it is much
easier).

The razor is asking players the right questions. It means
thinking about your playtesting questionnaire while you're still
early in design. We don't like to think about player input in
this phase because it feels commercial and crass -- but what
we should be using it as is a way of testing our own
assumptions about what we all want to experience.

When we playtest, we tend to ask one of two types of question: 1) a
really stupid question (such as “did you like it?”), or 2) a useful but
very emotionally vague question (such as “what were you trying to
do?”). The first type of question is really stupid because what you
mean is “please lie to me and tell me you liked my game”. The
second type of question is totally useful and necessary but tells us
nothing about the emotional, subjective, qualitative experience the
player is getting. If our game is about revenge but the player is
experiencing hate, “what were you trying to do?” won’t give us a
clue about our target being off.

84

85

In a way what we were doing at Glasslab was radically easier in that
the needle we wanted to move was knowledge-based and
behavioral. It could be directly observed and players could prove
they had knowledge or not. I knew Mars Generation One had hit its
target when I saw a girl change a claim she was making with her
argubots. When I asked her why she did it, she said “well, at first I
thought X, but then once I looked at all the evidence I realized there
was more evidence for Y, so I changed what I thought.” Bingo.
Reason-based society here we come.

The question I had asked her in that moment was just a standard
think aloud question — tell me what just happened. And you need
that. But the precision of our focus on this outcome of how she was
going to relate to evidence, and what was going to change in her
head through the process of making the game (that’s the other
important part — the PRE and the POST picture of your player’s
mind), gave me the precision to be able to dive in in that moment
and realize something important had just taken place. That’s the
power of asking the right questions.

“Regular” fun games are looser. And often we aren’t even terribly
intentional about what specific emotional experience we’re trying to
evoke in the player. Asking precise, emotion-centered questions —
such as "if you could use three adjectives to describe your
experience playing this game, what would you use?" — can not only
tell us more of what’s going on inside the player’s emotional
chemistry lab, but help us reflect on whether what we set out to
make is really what we want to make at a later given moment in
development.

Again the other important notion here is the idea of the PRE and the
POST. How your player starts out, and how they end. You can do
this — and we did with Mars Generation One — in terms of an
emotional journey. What deep need is your game going to fulfill in
your player? That need can be emotional, and our deepest needs
most often are. With Mars Generation One, we knew that alongside
the cognitive journey we were going to take players on, we also
needed to take them on an emotional journey. And if we wanted to
be deliberate about this, we were going to lay out their pain state
before playing and the emotional goal state we’d bring them to.
Making this explicit influenced our smallest aesthetic decisions all
along the way. That’s the other power of asking the right questions:
it gives you a dynamic frame for how your player will change.

So this is what I would challenge you to do: early in design,
deliberately set out to define precisely what the player’s emotional
experience should be both BEFORE and AFTER they play your game.
Design 3 to 5 questions that specifically address this emotional
transformation, and use those questions in your player interviews.
Try to keep them the same (so that you can tell whether you’ve
improved the situation, made it worse, or neither, between
iterations), but if you evolve them, that’s okay. The point is the
process, which also becomes our thought process, which then
becomes intentional game design.

90

91

I think you might find it addictive. Once you open the door to
measuring specific changes in your players, there’s no going back.

if you try it, hit me up! I hope it’s helpful.

Soren Johnson is most know for his involvement with
Civilizations III and IV.

He now runs indie studio Mohawk Games who shipped
economic RTS Offworld Trading Company and recently
announced their next game called 10 Crowns

And he’s also on the advisory board for this very conference!

This phrase is so common, it’s basically an idiom. Indeed, while some of our non-

American friends here might be baffled by baseball in general, they probably still

know this rule. However...

...it’s not actually true. The batter is not out after the third strike. It’s only when the

catcher catches the ball that the batter is out.

If the catcher drops or misses the pitch, then the batter is not out and has a chance to

advance to first. This almost always results in an out as the catcher simply picks up

the ball and makes the easy throw, but occasionally, this little-known rule can become

a big deal, as it did in last year’s final game in the playoff series between the

Chicago Cubs and the Washington Nationals. Max Scherzer threw a third strike past

a swinging Javier Baez, but watch what happens...

...the Nationals catcher Matt Wieters missed the ball between his legs, allowing Baez

to make it safely to first base. This would have been the third out of the inning.

Instead, the Cubs scored two more runs and later won the game by only one run and

advanced to the next round.

Thus, an obscure rule knocked the Nationals out of the playoffs.

Where exactly did the rule come from?

It actually reaches back to the very first time the rules of baseball were put down

in print, by the German Johann Christoph Friedrich Gutsmuths.

He outlined something called “English Base-ball” - which was a game of innings

with a batter, fielders, safe bases, and scoring at home plate. However, there

were no strikes or balls yet. The pitcher stood close to the batter and more or less

“delivered” the ball as a soft lob to be hit. The pitcher wasn’t trying to challenge

the batter; the game was about fielding the ball AFTER it was hit.

However, what happens when there is a terrible batter who can’t hit anything? In

Gutsmuths’ game, he had a special rule for this situation - the batter gets only

three swings. On the third swing, the ball is automatically in play whether it is hit

or not. So, the batter will run to first either after hitting the ball or missing for the

third time. Indeed, there is no catcher to receive the ball; so the pitcher would

need to run to home plate to pick it up and throw to first.

In 1845, the American Knickerbocker Base Ball Club writes down their rules for the

game, and some things have changed.

The pitcher is now much farther from the batter and throws the ball horizontally, which

requires the new position of catcher. However, they preserve the logic of the old

Gutsmuths rule - that the ball is in play after the third missed swing - like old legacy

code lying around.

The “strikeout” is actually emergent gameplay because after the third miss, the ball is

now technically in play, and the catcher turns it into an out by catching the

pitch. Thus, there is no actual difference between the catcher making an out from

catching a popup and the catcher making an out from catching the pitch after

a third missed swing. In each case, the ball is now “live” and the catcher makes an

out by catching the ball before it hits the ground.

However, they had to patch the game later because of an unintended consequence of

not taking the time to make the strikeout an official rule. Because the ball would be

considered “live” after a third strike, the possibility for a cheesy double- or triple-play

existed.

For example, if the bases are loaded, then the catcher can intentionally drop the

ball, pick up it up again, step on home plate for an easy out, and then throw to third

and then on to second for two more. Therefore, in 1887, they added a new rule so

that the batter would automatically be out if a runner was on first base AND there

were less than two outs.

Thus, Three Strikes and You’re Out - the way everyone assumes baseball is played -

is true... but only under a very specific set of circumstances. They opted for an ugly

patch instead of just rewriting the rules to match how the game was actually being

played!

Indeed, think about the situation with Javier Baez. There WAS a runner on first

base… so, even though the catcher dropped the ball, it should have been a

strikeout… except, there were two outs, so we’re now back to the original dropped

third-strike rule again.

Think about it - they could have just rewritten the rules so that Three Strikes and

You’re Out applies at ALL times. Wouldn’t that be simpler? More intuitive? Why go to

the trouble of fixing the one glaring issue with catchers intentionally dropping the ball

and not just get rid of the old, vestigial rule.

The reason is that we inherit our game design from everything that comes before us.

Sometimes, this inheritance is obvious - Civ 6 inherited from Civ 5 which inherited

from Civ 4, and so on.

Sometimes, a designer inherits from the games he or she played as a kid (Mario ->

Braid, Myst -> The Witness)

Sometimes, games inherit from themselves. This is a timeline of the
development of our economic RTS Offworld Trading Company.

You might make certain development shortcuts or hacks early on just so that you can

get your prototype playable, but then these become assumptions are now baked into

your design whether you want them there or not. You have to REMEMBER that it

was an accidental or arbitrary choice.

The most common thing to inherit, however, is game mechanics, usually from games

in the same genre.

For example, although Offworld Trading Company is an RTS, it’s notable for being

one without units. However, we didn’t start there as we inherited from all the other

RTSs before us, Starcraft, Age of Empires, and so on. Thus, we had scouts,

builders, transports, pirates ships, police ships, and so on.

Over time, we discovered that this inheritance was weighing the game down, forcing

the player to spend time wrangling units that would have been better spent playing

the market. Slowly, we took these units out one by one, first the transports, then the

combat units, then the builders, and finally the scouts. The game looks like a radical

break with the past, but it took us a long time to get there.

The problem is that iterative design can be a trap - that you can no longer see those

parts of your game that are holding you back from a much better design. It’s easier to

make small changes that fix glaring issues rather than to re-evaluate your entire

design

Sometimes, the problem with a game’s inheritance can be at the conceptual level.

Consider Spore...

...which was conceived of as a “Power of 10” game that went from cellular-scale all
the way up to galactic-scale. That was the hook, the point of making the game.

This part of the game was widely seen as a disappointment, that the five disparate

levels felt like five different games duct-taped together. However, something

interesting happened with the failure of Spore...

...which is that it wasn’t actually a failure after all. This is how many people are

playing Spore right now - not bad for a 10-year-old game.

Indeed, check out this chart, which compares Spore to the two most successful PC

games released the same year - 2008. Spore currently crushes them, and keep in

mind that Spore didn’t even launch on Steam.

What happened was that the most interesting part of the game did not come from the

Powers of Ten concept, but from the editors inside the game - especially the creature

creator, which dynamically animated the players’ creations.

However, these editors were developed midway through the project; Maxis started

making a game about one thing and accidentally ended up making a game about

something else. One of the big unanswered question about Spore is what could we

have done if we had been able to ditch the Powers of Ten concept and refocus the

game on the editors?

Here’s a classic case study in inheriting bad design. Creep denial is a mechanic in

the original DOTA where you kill you OWN units to keep your opponents from getting

gold and experience from them.

Indeed, creep denial is one of the focal point of high-level play in DOTA, to maximize

your experience point gain relative to your opponents to outlevel them. However, it’s

an open question whether this is actually GOOD design.

At the very least, creep denial is ACCIDENTAL design because DOTA inherited it

from Warcraft 3 - this was simply how that game handled killing your own units.

Indeed the fact that Warcraft 3 even ALLOWED killing your own units was likely an

afterthought by the designers.

DOTA inherited this rule because the game was literally built inside of Warcraft 3 as a

mod. Thus, MOBAs inherited a ton of design and mechanics from Warcraft 3. The

original DOTA designers may have wanted many things to work differently, but they

really didn’t have a choice given the limitations and assumptions of the Warcraft 3

editor.

Dota 2 and League of Legends, of course, inherit their design from the original Dota

mod, but they made different choices about their inheritance of creep denial.

Basically, League dropped it while Dota 2 kept it.

This is from a Reddit thread on why creep denial is not in League. Don’t worry about

reading this, I just want to point out how “RandomGuyDota” is trying to explain why

creep denial is bad for the design using the game mechanics themselves. This is

pretty typical reasoning for something that has become part of a game’s design

inheritance - the burden of proof is always on why it should be removed from the

game, not on how it got added in the first place.

However, I have a simpler explanation for why creep denial is bad design...

I mean, come on, you want your players to be spending their time killing their own

units? Is that really a core part of what makes MOBAs work? The game would fall

apart if you couldn’t kill your own guys?

aahdin perhaps sums it up better than I ever could. <drink>

At some point, you have to step back as a designer and re-evaluate your inheritance.

Does the core gameplay survive without the feature? Is the feature unintuitive, making

the game harder to understand or to pick up? Is there a better way for the players to

be spending their time than on this feature?

In the case of creep denial, the answer to all those questions suggests that the game

would be better off without it. There is only one magical core feature to MOBAs, the

one feature which cannot be dropped - and that is taking the scope and complexity of

an RTS but focusing the player’s control onto just one unit, which makes the game

accessible to a larger audience by an order of magnitude. Everything else,

EVERYTHING ELSE, is just accidental inheritance resulting from the genre’s origin

as a Warcraft 3 mod.

In fact, although League doesn’t have creep denial now… they actually started with it.

These are League of Legend’s very first patch notes, published in July 2009. They

inherited creep denial but killed it very early.

So, although they got it from the original mod, they were willing to
critically examine their game’s past.

In contrast, here is the history of creep denial from Dota1 to Dota2. You can see an

awareness that creep denial might not be the best thing for the game.

Look at 6.82 - “Denied creeps now give less experience” - a clear sign that they want

to weaken this feature by rewarding players less for focusing on creep denial.

However, instead of ripping it out, they are making small changes around the edges.

(They switched to Dota2 between 6.44 and 6.78.)

Basically, they are doing what baseball did when they patched the dropped third-

strike rule by making it not apply in certain circumstances instead of just getting rid of

the dumb rule itself.

Remember my questions on the value of creep denial? Does the core gameplay

survive without the feature? Is the feature unintuitive, making the game harder to

understand or to pick up? Is there a better way for the players to be spending their

time than on this feature? Running this exercise with the dropped third-strike rule gets

us to the same place - that it’s bad, accidental design that is ultimately hurting

baseball.

Now, here’s a comparison of the two games, and some other MOBAs. There are

many reasons why League outpaces Dota2 by an order of magnitude - an almost

three year head start is a pretty big one - but I also believe that Riot’s philosophy of

re-examining their inheritance from the original Dota mod, which extends well beyond

just removing creep denial, is a very important piece.

Now, I also have thoughts about last hitting, but fortunately, I don’t have time for that. I

say fortunately because, Heroes of the Storm, which is the only one of
these three to drop last hitting, is less successful than Dota2, let alone

League. Thus, I can’t really make an argument that the market has proven that last

hitting is bad design. Further, I don’t think it would be reasonable to expect Riot to

experiment with dropping last hitting at this point; it’s just too late; League is one of

the world’s most popular games. Indeed, they are lucky that they dropped creep

denial so early in their development before doing so might have split community

opinion.

We don’t always have the luxury of looking at the market to prove out our decisions,

which is why re-examining a game’s inheritance is such a difficult and important

issue.

Choosing to erase your inheritance takes real bravery. Sometimes, you have to trust

your own rational design process if you see a problem. Sometimes, you have to go

with your gut. Ultimately, you must be willing to see your history, know how it led you

to where you are today, and then have the courage to drop the past.

Josh Sawyer has been making RPGs for quite some time,
going back to working at Black Isle Studios on Icewind Dale.

After a stint working near me on a Gauntlet game that we
don’t need to speak about,

Josh moved to Obsidian, working on titles like Fallout New
Vegas and the Pillars or Eternity series, with Pillars of Eternity
II Deadfire shipping soon.

Always Give 50%

Many CRPGs try to recreate the tabletop experience.

The best DMs and GMs adapt to what their players give them.

Giving 50% is about establishing a gameplay environment
that allows the player to contribute half of the story, half of
the experience.

127

128

129

Pudu, captain of the guard

130

131

132

133

Stone Librande’s professional career goes back to work on
Spore and Sim City while at Maxis

He also teaches classes with Carnegie Mellon and is now a
lead designer at Riot Games

But as we’re about to find out, his background making games
– specifically board games– goes back much farther than that.

Stone Librande!

Intro – Star Wars board game

Ever since I was a kid I have been making paper games.

Here’s an “attack the Death Star” game that I made shortly
after seeing Star Wars for the first time.

The Rebels control X-Wings and Y-Wings and are trying to
destroy the Death Star before it blows up the Rebel base.

135

Intro – Rollerball board game

I was too young to see the R-Rated movie Rollerball when it
came out, but I was fascinated by its futuristic death sport.

Building paper simulation and interacting with the rules and
pieces was my way of thoroughly understanding a system and
its relationships.

I continue to make paper games for the same reasons to this
day. So it shouldn’t be a surprise that my game design rule
is…

136

Title – Play it on Paper

…“Play it on Paper”.

137

Paper Prototypes of Spore

9 years ago I gave my first GDC talk about the paper
prototypes that were created for Spore.

In that talk I didn’t have time to talk about how to make your
own paper prototypes, so I’d like to address that today.

(The talk is not available on the GDC Vault, but you can
download the slides from my website:
http://www.stonetronix.com)

138

What not to do

Before I talk about what you should do, I want to give a
warning about what not to do:

Don’t try to duplicate the entire game!

Your paper prototype doesn’t need to cover every facet of
your game from beginning to end.

Instead, you should narrow your scope and focus on specific,
targeted questions.

Here are four things to consider…

139

State your Intention

The first thing I recommend doing is to determine the
question you are trying to answer.

This may a question that people on the team are asking, but it
might be too early in development to answer it in the game.

140

Scope

How much of the game will you be prototyping?

Single Idea

When you are trying to answer a specific question.

“Which potions will players buy in the store? How much should
they cost?”

Session

Observing the type of decisions a player might make during a
small portion of the game.

“How will players develop their farm for the season? What
resources will be needed?”

Full Game

I warned you that it can be a mistake to try to duplicate the
entire game. But it can be useful to select one system in your
game and prototype how it plays out from the beginning to
the end.

“What paths can the player take as new skills become

141

available? How will they use those skills to overcome the challenges
they will face?”

Metagame

Determining the reward structures for long term engagement.

“Which bonuses will players choose? How do their options change as
new mechanics are unlocked?”

141

Purpose

What is the purpose of the prototype?

Mechanical Simulation

Cause and effect relationships

Order of operations

Movement speed, distance, range

Warning: Computers are really good at this. Why are you
simulating it on paper?

Abstract Concept

Ideas or components of the game, but not representative of
actual gameplay

What type of monsters will players encounter? What makes
each one special?

Emotional Engagement

The “feel” of the game (pressure, excitement, surprise,
humor, relationship, etc.)

“Rock Band” as a paper prototype

142

Time Scale

Slow

The paper prototype takes longer to play than the computer
version. (This is common.)

Players have more time to make decisions

Good for analyzing decision making processes

Example: A card game that simulates combat choices in a
FPS.

Real-time

The paper prototype takes the same amount of time as the
computer version.

Good for analyzing player reaction and interaction possibilities

Example: A matching game that uses a timer.

Fast

The paper prototype takes less time to play than the computer
version.

Good for quickly simulating processes that may take many
sessions.

143

Example: A boardgame with armies moving across a continent.

143

Summary

Why are you making the prototype?

Where in the game does your prototype apply?

What is the purpose of the prototype?

When does the action take place?

144

WarCards

This is a card game I made a Blizzard North that was being
considered for inclusion into World of Warcraft.

Scope: Session and Metagame

Focus: Mechanical simulation. (Also happened to show us
emotional engagement.)

Time Scale: Slow. Players had to keep track of life points,
shuffle cards, etc.

145

WarCards

This is a card game I made a Blizzard North that was being
considered for inclusion into World of Warcraft.

Scope: Session and Metagame

Focus: Mechanical simulation. (Also happened to show us
emotional engagement.)

Time Scale: Slow. Players had to keep track of life points,
shuffle cards, etc.

146

Starblo

These trading cards were created to help get a feel for the
weapon sets that would be in Starcraft/Diablo hybrid game.

Scope: Single Concept

Focus: Abstract Concept

Time Scale: None

147

Starblo

These trading cards were created to help get a feel for the
weapon sets that would be in Starcraft/Diablo hybrid game.

Scope: Single Concept

Focus: Abstract Concept

Time Scale: None

148

Starblo

These trading cards were created to help get a feel for the
weapon sets that would be in Starcraft/Diablo hybrid game.

Scope: Single Concept

Focus: Abstract Concept

Time Scale: None

149

Springfield

This a scale map of Springfield from “The Simpsons Game”. It
was used to locate various key points in the game.

Scope: Full game

Focus: Mechanical Simulation

Time Scale: Fast

150

Springfield

This a scale map of Springfield from “The Simpsons Game”. It
was used to locate various key points in the game.

Scope: Full game

Focus: Mechanical Simulation

Time Scale: Fast

151

Spore Galactic Adventures

Interactive UI mockup showing player interactions while
building missions

Scope: Session

Focus: Emotional Engagement

Time Scale: Real-time

154

Spore Galactic Adventures

Interactive UI mockup showing player interactions while
building missions

Scope: Session

Focus: Emotional Engagement

Time Scale: Real-time

155

Lane Fighter

Proposal for a tactical mini-game that simulates two “League
of Legends” champions fighting for control of a lane.

Scope: Full game

Focus: Mechanical Simulation

Time Scale: Slow. Players had to do a lot of bookkeeping. (The
paper prototype took about 30 minutes to play. The computer
version ended up taking about 3 minutes.)

156

Lane Fighter

Proposal for a tactical mini-game that simulates two “League
of Legends” champions fighting for control of a lane.

Scope: Full game

Focus: Mechanical Simulation

Time Scale: Slow. Players had to do a lot of bookkeeping. (The
paper prototype took about 30 minutes to play. The computer
version ended up taking about 3 minutes.)

157

Conclusion

Specify intent before proceeding

Make sure you understand your categories. Write it down.

Who is the audience that will be playing the prototype?
(Typically other designers)

What is the necessary quality level (pencil and index cards, or
polished art and components)?

One size doesn’t fit all

Every project is different. A paper prototype of an iPhone app
will be different than a AAA game.

It doesn’t need to be fun

You aren’t trying to sell it to Hasbro

You aren’t making a full game; you are solving a problem or
answering a question

Resist the urge to add extraneous features that make it a
better game, but stray from the stated purpose.

158

I hope these rules have proved useful to you.

And I want to remind you

159

It’s not so much “Are you using the right rules?”

160

But to instead use these to help reframe your thoughts and
change your perspective

And think about if you are asking the right questions.

161

Thanks!

