
GETTING STARTED
ROLLING YOUR OWN TOOLS

shane marks
technical director, necrosoft games

● started in 2012
● distributed team
● small core supported by external contractors
● focus on vertical slices

JUST USE UNITY/UNREAL/GAMEMAKER!!

● sure?! we use an engine too!
● we just don’t want our writer/designer/??? to learn
an entire engine to work on our game
● the first step to greatness is hateness

#TOOLBIAS
● the tool sets the limit on your vision
● you make the rules, the software shouldn’t force
you to compromise your vision

HOW YOU START [EXAMPLE]
● problem: we need to create levels in Oh, Deer!
● requirement: needs to work on multiple (niche)
platforms
● user: designer needs to make levels, not the
programmer
● solution: we need a tool!

THE ACTUAL PROBLEM
● what interface will best aid in solving this problem
● the programmers job is to understand the data.
● how much time and compromise can I afford?

GOOD: ERROR REDUCTION
● users shouldn’t have to learn 80% of the features
to know how to use 20%
● can’t export or build a broken dataset
● don’t have to search through your spreadsheet to
find some piece of invalid json/xml

GOOD: SPECIFIC
● design for the problems you have today, not the
ones you think you’ll have tomorrow
● customise the tool to amplify your creativity

TARGET USER
● who is it for?
● what makes them happy?
● respect their time

API DESIGN
● entire topic within itself
● just be aware this is extremely important
● look at existing APIs (stb, imgui, tiny, sokol)
● talk by Casey https://youtu.be/ZQ5_u8Lgvyk

IMPORTANT TO US
● what’s the least amount of work to finish the game.
● if you want your tool feature complete you’re never
going to ship a game.
● figure out what’s important to you!

OH, DEER! SCRIPTING
● the designer needs to make tracks!
● our designer was willing to compromise and use a
custom scripting tool
● create a limited editor and data format

GOOD: OH, DEER! SCRIPTING
● data format can be translated into any language
● hot reloading
● no slow deserialization at runtime.
● tight set of valid keywords to know

BAD: OH, DEER! SCRIPTING
● the terrain should have been tied to the road
● it was hard to keep the layout of a level in your
head
● it was difficult to insert patterns later in the process
● designer didn’t understand how to make patterns

OH, DEER! LESSONS
● we should have thought more about the data
● the API and scripting format should have been
documented
● a basic visual editor would have made the game
better

ANOTHER EXAMPLE
● problem: we need to create skeletal animations in
Gunhouse
● requirement: needs to work on playstation mobile
● user: artist doesn’t know how to code
● solution: we need a tool!

GOOD: GUNHOUSE
● artist can now use spriter, a specific tool for their
task
● programmer can now work with known data, the
spriter format

HONK: GUNHOUSE
● things change!
● playstation mobile shuts down
● we now need to port the game to a new platform

GOOD: GUNHOUSE
● we used a documented data format
● just needed to create an import script to transform
the data to the new engine
● animator doesn’t need to come in again and
recheck everything
● reduced porting time by several months

GUNHOUSE LESSONS
● it’s okay to use existing tools
● without using a tool at the start we would have had
to write one anyway to port the game
● you can avoid duplicate work later in development
if you evaluate earlier in production

QUESTIONS?
shane@necrosoftgames.com

@necrosoftgames

