

- Michael bio:
- 15 years at Bioware prior to

Phoenix Labs
- Artist on KotOR and Environment

lead on Mass Effect 1 - 3
- Technical Art Director on the early

stages of what is now Anthem
- Mykola bio:

- Worked at SideFX on Houdini +
Engine

- Previously worked rendering
engineer on a broad range of

titles.

- The system and content has been
developed primarily by a small group
at Phoenix Labs. Michael
Trottier(tech art), Mykola
Konyk(engineer), and Jen
Morgan(world art), Cory
Lake(technical art), Glenn Barnes(Art
direction)

Overview: what we’re talking about /
what the viewers can walk away with.
(fill in outline slide)

- Introduction - say hi
- Our team and how proceduralism

makes sense for all the usual reasons
(more with less)

- Dauntless
- the game (quick summary +

invite to upcoming open beta)
- The setting - the shattered isles

(some quick inspirational
concepts)

- Goals/Requirements + terminology
slide?

- give a clear understanding of our
target

- Show current status
- Houdini basics (networks, attributes,

assets, vex + hdk, houdini engine).
Houdini terms you are going to hear
a lot throughout our slides

- Our technology -
- Data goes back and forth -

describe recipes, packed data
- We’ve branched from houdini

engine ~2 years ago. We’ll try
and point out where our tech may
differ from base plugin.

- Use cases (each one describing a
building block and demoing an
advanced use case):

- Point instancing -
- Instancing plain ol’ static

meshes - building block
- Our foliage

- quilter
- Geometry generation -

- Custom mesh building block
- land massing + early pipeline

explanation
- Landscape generation

- Landscape building block
*note that we may differ from
the standard plugin, possibly
open source the plugin if
there’s interest

- Layers (primarily exposing
unified noise layers with
controls)

- Originally a COP
implementation but
transitioned to heightfields

- Accumulation
- Lessons learned + conclusions

- Don’t do one uber asset…
- Rapid prototyping

- Python and transition to HDK
+ Vex

- Constant discussion / feedback
with Jen. Our best stuff had tiny

feedback loops with art
- Decomposition into stages

(modular nature)
- Save to hip file (quick back and

forth between Houdini standalone
and Unreal)

- All inputs and outputs were
compatible with normal unreal
systems and workflow

- Houdini is largely geo and
attributes, getting beyond that to
higher level data types

What is Dauntless? Explained briefly.

- Dauntless is a co-op, action RPG
coming to PC, currently in early
access.

- Battle ferocious Behemoths, craft
powerful weapons, and forge your
legend in the Shattered Isles

- We invite you to learn more and join
our upcoming open beta
(playdauntless.com)

Environments of Dauntless / Floating
Islands, what are they.

What we set out to achieve:
The shattered Isles play a

critical role in dauntless. They’re so
much more than a passive backdrop for
the experience. We (Mike and Mykola)
joined the team because creating this
epic setting with a small focused team
was going to require something beyond
the typical approach.

Island art requirements. Style. Biomes.

The requirements were not all visual. On
top of having believable floating
landmasses, we had specific goals for a
consistent, directable gameplay
experience. Without covering all the
details… as input, a user would specify a
3D configuration of land and connections
- a high level design. We would need
powerful controls to tailor the result.
And finally, the output needed to be
compatible with a normal unreal
workflow (landscape, sometimes specific

arrangements of instanced meshes,
blueprints, volumes, etc...)

Play video demoing current state. Note
that this has received polish (part of our
standard process) on top of the cooked
result.

We currently generate all the required
pieces for a fully playable dauntless
island.
We have an initial 3 biomes (with sub
area types) with more in the works.
Evolved design tools for easy direction of
a game space

To properly describe some details of our
implementation we’ll quickly cover a
handful of Houdini terms.

Very quick basic building block introducti
on (houdini networks, attributes, assets,
vex and hdk),
for people completely new to Houdini.

What we use - UE4, Houdini, Houdini
Engine.

Houdini Engine use, describe the type of
actors we could generate (staticmesh,
landscape, foliage, blueprints, lights, and
instancing support)

We occasionally input unreal actors back
into houdini for further processing. Such
as, custom mesh for moss trunks, snow
accumulation on meshes, moss in
cracks, etc...

Moving data from UE4 to Houdini works
out of the box for a lot of simple types
(plain values, asset paths, curves…) but
becomes a problem if we wanted to
preserve any higher level data types.

Houdini presets work pretty well but we
wanted to define a singular unreal side
source (a recipe) for the biome
configurations shown earlier. The details
aren’t important at this point, but at a
high level - a recipe is a complete visual
configuration for a biome and it’s sub-
areas.

And here’s a shot from the output of that
same recipe.

We’ll quickly go over our pipeline stages
at a high level to give context to some of
the later pieces.

Level graph:
- Basic graph describing the zones

(chunks of playable land), their
position/orientation, and their
connectivity. Basically chunks of
land and any important navigation
connections.

Voronoi map:

- Intermediate 2D stage where we
resolve all the map constraints
(connectivity, area/shape, and some
topological information like outcrops
+ slope)

- We use a basic 2D voronoi fracture to
define the individual cells

- We build bridges at this point and
save navigation network information

A 3D representation of our level is
constructed from the 2D voronoi map.

- Mesh is clean / watertight
- Maintain a list of primitive groups

and attributes in order to preserve
additional information (adjacency,
area type, navigation network)

- Island base is cut using manipulation
of the points in a voronoi fracture
(pictured as a 2D cross section in the
top right)

Outcrops:
- We provide overall density and

individual override controls
- We approximate stress vectors for

the colliding land masses and orient
outcrops accordingly.

- Setting and adjusting land or outcrop
positions is the majority of the design
work when developing a level.

- From the simple underlying 3D base
of the previous stage we generate all
the remaining required components
of a fully-playable dauntless island.

- Rather than cover all of these very
briefly, we wanted to dig into details
on a select few.

The first few steps with a pipeline that
involves houdini engine can be a little
overwhelming. To help…
We’ll show a basic setup that can be
used to create a component of our
pipeline and a more complete example of
where that can lead.

This asset demonstrates the basic
minimum required to scatter instantiated
static meshes in any project. We have a
simple string point attribute defining the

unreal path to a static mesh resource
and another integer attribute defining
whether the resulting points should be
instanced or individual actors. (Mykola?)

You’ll commonly want more complete
transform information so we’d typically
include the optional attributes scale
(float3) and orient (float4)

This is a good time to point out that
random distribution of assets was rarely
the solution for many of the problems we
faced. More often we wanted a very
specific arrangement of meshes.
We wanted Jen to be in control of an
evolving visual target. Our approach
works off the idea that we have
sample(s) demonstrating ideal and we
can extrapolate from those to solve a
new scenario.

Describe quilting in more detail. How we
establish the ideal for a pattern or
arrangement (via blueprint) and use that
to populate (“quilt”) a new space. We
use this for cliffs specifically but the
solution is generic. Our solution
supports instancing, and has
configurable controls to minimize
distortion (uniform and non-uniform
scale differences).

And here you can see some sample
output of our ‘quilter’ assets (prior to
any art polish)

We run a *very* simple growth
simulation to propagate a number of
asset types. The goal was natural
looking distribution but it was critical the
results could be easily understood (and
tweaked) with art. Plants had a handful
of key properties that let us control
where(material types) and
how(alignment, clumping) it grew.

This is a simplified version of Unreals
foliage propagation volumes. (We
wanted more specific control of the
individual point instances within Houdini)

- We simulate a fixed number of
generations, each allowing a plant to
reseed and age.

- Plants respect a shade radius of
neighbouring plants, allowing us to
control the intersection and clumping
density of adjacent plants.

- Reseeding directions are influenced

by a simple noise based vector field
(“prevailing winds”) to improve
cluster shape.

- For performance reasons we allow a
fixed number of reseeding attempts.

- Based on plant properties, some are
masked/culled. (ie. not allowed in
water, too near the island edge…)

[Mike]
We’ll show the bare minimum setup
required to output a fairly standard
landscape actor (possible differences
with our plugin?)
In the create layers node we’ve set up
our two main material layers and
provided a visibility mask for holes
There’s a few more attributes required
than our previous point example but the
setup is still fairly straightforward
They’re all driven by some standard

houdini noise in this example.

Here’s an example of driving the water
level and a few landscape materials
inside of the ‘melt’ area of our icy biome
recipe.
We pre-compute layer weights
(normalize) during generation time. The
layers (and their count) are all recipe
driven.

Stages of our pipeline.

Stages of our pipeline.

Stages of our pipeline.

- Lessons learned + conclusions
- Don’t do one uber asset…
- Rapid prototyping

- Python and transition to HDK
+ Vex when efficiency is more
critical

- Constant discussion / feedback
with Jen. Our best stuff had tiny
feedback loops with art

- Decomposition into stages
(modular nature)

- Save to hip file (quick back and

forth between Houdini standalone
and Unreal)

- All inputs and outputs were
compatible with standard unreal
systems and workflow

- Houdini is largely geo and
attributes, getting beyond that to
higher level data types

- You might rephrase that as getting
us to think more unreal than getting
jen to think more houdini-like.

Thank you!
We moved quickly and couldn’t always
cover as much detail as we wanted to.
We’re more than happy to answer
questions and fill in gaps.

