
GPU Driven Rendering and
Virtual Texturing in Trials Rising

Oleksandr Drazhevskyi

Technical Lead

Ubisoft Kiev

Agenda

●Trials Rising Technical Overview

●GPU Driven Rendering

●Virtual Texturing Technique

●VT and GPU Pipeline Optimization

●Conclusion and Future

Trials Rising

Latest installment to the brand which features:

● Physically based gameplay

● Fully dynamic world

● Constant 60 Fps gameplay

● Focus on User Generate Content

● Game as a platform

● Advanced customization

● Competitive gameplay

Trials Rising

Latest installment to the brand which features:

● Physically based gameplay

● Fully dynamic world

● Constant 60 Fps gameplay

● Focus on User Generate Content

● Game as a platform

● Advanced customization

● Competitive gameplay

This features drive rendering
engine architecture

Initial Technical Requirements

● Improved visual quality

● More CPU time for engine and gameplay

● Enhanced 4k rendering

● 60 frames per second

● Improved UGC performance

● Better GPU utilization

● Multi platform scalability

UGC

UGC

UGC

h
tt

p
s
:/

/w
w

w
.y

o
u
tu

b
e
.c

o
m

/w
a
tc

h
?
v
=

w
w

rC
0
q
N

B
Q

c
c

World Structure

● Artists author micro prefabs

● Level designers populate world with macro blocks

● Small levels with high geometry complexity

● Players can do the same (UGC game)

● Blocks “density” not balances across the level

● Visual quality highly depends on macro blocks count

● Batching is extremely complicated

Geometry Complexity

Macro block example

Geometry Complexity

Macro block contains about 65 micro prefabs in average

Geometry Complexity

Micro prefabs example

Engine Limitations

● About 2500 visible instances (i.e. micro blocks)

● Two CPU cores allocated for rendering

● Conservative shadows draw distances

● CPU is a huge bottleneck

● UGC levels sharing issues

● No occlusion culling on PC

GPU Driven Rendering

● Move visibility testing to GPU

● Use testing results directly on GPU

● Batch instances on GPU

● Merge instances of different meshes together

● GPU is aware of scene state – not just a portion that

passed frustrum test

● “GPU feeds itself with rendering commands”

GPU Driven Rendering

Update instances on

GPU

Prepare batched draw

lists

Issue draw list pipeline

Filter draw lists

Assemble geometry lists

Prepare control data

Execute draw

commands

CPU GPU

GPU Pipeline Rationale

● Perfectly fits requirements

● Few successfully shipped games

● Investment in future

● Unlocks quite a bit of optimization possibilities

● Doesn’t require “intrusive” changes in content

● Overall optimization benefits for the engine

GPU Pipeline First Iteration Outcome

● Great CPU/GPU boost

● Not enough to hit target frame rate

● CPU is struggling to gather and send instance data to GPU

● A lot of CPU to GPU bandwidth pressure

● GPU utilization decreased

● Draw data gathering and batching is a main bottleneck

Scene GPU CPU

Construction Site 22.17 ms 51.43 ms
(*Xbox One numbers)

(*Xbox One numbers)

Scene GPU CPU

Construction Site 17.95 ms (-4.22 ms) 24.09 ms (-27.34 ms)

GPU Driven Rendering

Update instances on

GPU

Prepare batched draw

lists

Issue draw list pipeline

Filter draw lists

Assemble geometry lists

Prepare control data

Execute draw

commands

CPU GPU

GPU Data Structures

● Two GPU buffers to store geometry (i.e. Vertices and

Indices Pool)

● One big GPU buffer to hold instance parameters (i.e.

Instance Data Pool)

● Instance represented by Instance Descriptor

● One GPU buffer to store an array of all descriptors in scene

● CPU and GPU mostly operates with indices in this lists

Instance Descriptor

Instance Descriptor (32 bytes)

4 bytes Vertices offset

4 bytes Indices offset

2 bytes Indices size

2 bytes Flags

4 bytes Culling data

4 bytes Transform offset

4 bytes Skinning offset

4 bytes Material offset

1 byte Transform mode

1 byte Skinning size

1 byte Material size

1 byte Reserved

● Internal and external data

● Pretty much a pointer table

● Can represent any instance in

scene

● Idea is pretty close to

descriptor set

Instance Descriptor

Instance Descriptor (32 bytes)

4 bytes Vertices offset

4 bytes Indices offset

2 bytes Indices size

2 bytes Flags

4 bytes Culling data

4 bytes Transform offset

4 bytes Skinning offset

4 bytes Material offset

1 byte Transform mode

1 byte Skinning size

1 byte Material size

1 byte Reserved

Vertices pool (X Mb)

Instance 0 vertices Instance 1 vertices … Instance N vertices

Instance Descriptor

Instance Descriptor (32 bytes)

4 bytes Vertices offset

4 bytes Indices offset

2 bytes Indices size

2 bytes Flags

4 bytes Culling data

4 bytes Transform offset

4 bytes Skinning offset

4 bytes Material offset

1 byte Transform mode

1 byte Skinning size

1 byte Material size

1 byte Reserved

Vertices pool (X Mb)

Instance 0 vertices Instance 1 vertices … Instance N vertices

Indices pool (Y Mb)

Instance 0 indices Instance 1 indices … Instance N indices

Instance Descriptor

Instance Descriptor (32 bytes)

4 bytes Vertices offset

4 bytes Indices offset

2 bytes Indices size

2 bytes Flags

4 bytes Culling data

4 bytes Transform offset

4 bytes Skinning offset

4 bytes Material offset

1 byte Transform mode

1 byte Skinning size

1 byte Material size

1 byte Reserved

Vertices pool (X Mb)

Instance 0 vertices Instance 1 vertices … Instance N vertices

Indices pool (Y Mb)

Instance 0 indices Instance 1 indices … Instance N indices

Instance data pool (Z Mb)

Instance 0

transform/history

Instance 1

transform/history
…

Instance 0

material
…

Instances Table

● Represents simulated scene state

● Hottest data in pipeline

● CPU has own copy of the table

● Main sync point between CPU and GPU

● Used to update instance simulation state

Instances table (X Mb)

Instance 0 descriptor Instance 1 descriptor … Instance N descriptor

CPU and GPU Instances State Synch

● CPU is responsible for instance state simulation

and uploading to the GPU

● GPU waits for signal to read instances data

● Straightforward state regeneration every frame

doesn’t work

● According to the first implementation results the

data traffic is quite high and tends to increase in

future

Memory Budget

Defined maximum per level instances amount is 256k

Instances table CPU

256k instances = 8 Mb

Instances table GPU

256k instances = 8 Mb

About 2.8k macro blocks – more than a target requirement

Memory Budget Per Instance

There are ~20x skinned instances compared to previous

game

Instance Data Pool Static Instance

64 bytes Current transform

64 bytes History transform

64 bytes x 0 Current skinning matrices

64 bytes x 0 History skinning matrices

16 bytes x 6 Materials specific data

Average Static Instance

224 bytes Tolerable update cost

Average Skinned Instance

1248 bytes Expensive update cost

Instance Data Pool Skinned Instance

64 bytes Current transform

64 bytes History transform

64 bytes x 8 Current skinning matrices

64 bytes x 8 History skinning matrices

16 bytes x 6 Materials specific data

Construction Site Scene

Static instances 93.04% 11716 Ins ~2.5 Mb

Skinned instances 6.96% 877 Ins ~1.04 Mb

Typical Scene

Static instances 89.76%

Skinned instances 10.24%

History Transforms

Instance Data Pool Static Instance

64 bytes Current transform

64 bytes History transform

64 bytes x 0 Current skinning matrices

64 bytes x 0 History skinning matrices

16 bytes x 6 Materials specific data

Instance Data Pool Skinned Instance

64 bytes Current transform

64 bytes History transform

64 bytes x 8 Current skinning matrices

64 bytes x 8 History skinning matrices

16 bytes x 6 Materials specific data

History Transforms

Instance Data Pool Static Instance

64 bytes Current transform

64 bytes History transform

64 bytes x 0 Current skinning matrices

64 bytes x 0 History skinning matrices

16 bytes x 6 Materials specific data

Instance Data Pool Skinned Instance

64 bytes Current transform

64 bytes History transform

64 bytes x 8 Current skinning matrices

64 bytes x 8 History skinning matrices

16 bytes x 6 Materials specific data

One address + indirection

History Transforms

Instance Data Pool Static Instance

64 bytes Current transform

64 bytes History transform

64 bytes x 0 Current skinning matrices

64 bytes x 0 History skinning matrices

16 bytes x 6 Materials specific data

Instance Data Pool Skinned Instance

64 bytes Current transform

64 bytes History transform

64 bytes x 8 Current skinning matrices

64 bytes x 8 History skinning matrices

16 bytes x 6 Materials specific data

Instance Descriptor (32 bytes)

…

1 byte Transform mode

…

if (TransformMode == 0)

{

CurrentTransform = Pool[BaseTransform];

HistoryTransform = Pool[BaseTransform + sizeof(float4x4)];

}

else

{

CurrentTransform = Pool[BaseTransform + sizeof(float4x4)];

HistoryTransform = Pool[BaseTransform];

}

Transform mode controls current and history data sets

History Transforms

Instance Data Pool Static Instance

64 bytes Current transform

64 bytes History transform

64 bytes x 0 Current skinning matrices

64 bytes x 0 History skinning matrices

16 bytes x 6 Materials specific data

Instance Data Pool Skinned Instance

64 bytes Current transform

64 bytes History transform

64 bytes x 8 Current skinning matrices

64 bytes x 8 History skinning matrices

16 bytes x 6 Materials specific data

Savings

Average Static Instance

160 bytes Total: ~71.43%

Average Skinned Instance

736 bytes Total: ~58.97%

History Transforms

UpdateSubresource is slow: up to ~4ms

Types Relative Count Memory CPU

Static instances 93.04% 11716 Inst ~2.5 Mb 10.81 ms

Skinned instances 6.96% 877 Inst ~1.04 Mb 1.32 ms

Types Relative Count Memory CPU

Static instances 93.04% 11716 Inst ~1.79 Mb 10.49 ms

Skinned instances 6.96% 877 Inst ~0.62 Mb 0.89 ms

(*Xbox One numbers)

Instance Synchronization Rate

Instance Descriptor (32 bytes)

4 bytes Vertices offset

4 bytes Indices offset

2 bytes Indices size

2 bytes Flags

4 bytes Culling data

4 bytes Transform offset

4 bytes Skinning offset

4 bytes Material offset

1 byte Transform mode

1 byte Skinning size

1 byte Material size

1 byte Reserved

● Most instances don’t move at all

● Update rate depends on objects

usage

● Looks reasonable to split static and

skinned object in smaller groups

● Still keep only one instances table

Instance Synchronization Rate

Instance Descriptor (32 bytes)

4 bytes Vertices offset

4 bytes Indices offset

2 bytes Indices size

2 bytes Flags

4 bytes Culling data

4 bytes Transform offset

4 bytes Skinning offset

4 bytes Material offset

1 byte Transform mode

1 byte Skinning size

1 byte Material size

1 byte Reserved

This data changes frequently

Sort Instances by Category

Update rate (i.e. mutation rate) is a good metric for sorting

Construction Site Scene

Immobile instances 64.21% 8086 ~1.23 Mb

Mobile instances 25.09% 3160 ~0.51 Mb

Mutable instances 3.74% 470 ~0.08 Mb

Skinned instances 6.96% 877 ~0.62 Mb

Instance Synchronization Rate

Instance Descriptor (32 bytes)

4 bytes Vertices offset

4 bytes Indices offset

2 bytes Indices size

2 bytes Flags

4 bytes Culling data

4 bytes Transform offset

4 bytes Skinning offset

4 bytes Material offset

1 byte Transform mode

1 byte Skinning size

1 byte Material size

1 byte Reserved

● Global transform mode

● Move LOD selection to GPU

● Technically only CB data mutates

frequently

Instance Synchronization Rate

Instance Descriptor (32 bytes)

4 bytes Vertices offset

4 bytes Indices offset

2 bytes Indices size

2 bytes Flags

4 bytes Culling data

4 bytes Transform offset

4 bytes Skinning offset

4 bytes Material offset

1 byte Transform mode

1 byte Skinning size

1 byte Material size

1 byte Reserved

● Global transform mode

● Move LOD selection to GPU

● Technically only CB data mutates

frequently
Type Relative Count Memory CPU

Mobile instances 70.11% 3160 ~0.51 Mb 5.99 ms

Mutable instances 10.43% 470 ~0.08 Mb 0.37 ms

Skinned instances 19.46% 877 ~0.62 Mb 0.82 ms

From 3.63 Mb to 1.21 Mb

Data Transfer Improvements

● Instance update rate is not constant

● State parameters average update rate is

different and usually stable

● “Immobile” parameters is the case for

specific instance categories

● Huge amount of “idling” components

● Synchronize a bare minimum of the state
Flags modified only if

object state “changed”

Skinning modified

every frame

Micro Patches

● Write a simple list with buffer offsets and the data to be

written

● Patch application order matters

Collect “dirty”

instances

Build micro patches for

“dirty” parameters

Patch pool

Instances table

Schedule update work for

GPU

GPU Instance Table Patching

Collect “dirty”

instances

Build micro patches for

“dirty” parameters

Patch pool

CPU instances

table

Schedule update

work for GPU

GPU instances

table

Apply micro

patches

CPU

GPU

Frame N Frame N + 1

Pools Patching

Patch pool

Schedule update

work for GPU

GPU instances

table

Apply micro

patches

CPU

GPU
Apply micro

patches

Instance data

pool

Frame N Frame N + 1

Micro Patching Results

● Deferred synchronization

● Exactly one explicit sync point for all GPU structures

● No contention with GPU to access/modify buffers

● Patches data gathering improves CPU performance significantly

● Patch pool data scattering hits GPU performance

● Substantially less instances in “dirty” state

Micro Patching Results

● Deferred synchronization

● Exactly one explicit sync point for all GPU structures

● No contention with GPU to access/modify buffers

● Patches data gathering improves CPU performance significantly

● Patch pool data scattering hits GPU performance a bit

● Substantially less instances in “dirty” state

Memory CPU GPU

From 1.21 Mb 7.18 ms 17.95 ms

To 1.01 Mb 5.89 ms 17.41 ms

(*Xbox One numbers)

Variable Synchronization Rate

● Use variable animation rate idea

● Synchronize instances state based on “importance” factor

● Keep it deterministic (for replays, debugging, etc.)

● “Importance” computed automatically whenever possible

● Overall synchronization problem looks pretty similar to network

synchronization

Simulated instance

Transform data

Skinned data

Rendered instance

Transform data

Skinned data
60Hz

Instance Importance
Main character

simulated instances

Transform data

Skinned data

Main character

rendered instances

Transform data

Skinned data

60Hz

Physically simulated

decoration instance

Transform data

Skinned data

Rendered decoration

instance

Transform data

Skinned data

30Hz

Distant simulated

instances

Transform data

Skinned data

Distant rendered

instances

Transform data

Skinned data

15Hz

High Synchronization Rate

Low Synchronization Rate

Variable Synchronization Rate Results

● Tricky to define “importance”

● Use heuristics and dynamic “importance” adjustment

● Hard to spot quality difference but it’s possible

● Send data for the “next” simulated state (interpolate on GPU)

● Complexity with current and history parameters

● Make “frame index” associated with instance

● Worst case simulation cost still high

● Move as much as possible to GPU

Instance State Generation on GPU

● Bones, animations, and skeletons data moved to GPU

● Apply developed synchronization tech to keep this data up to date

● Generate skinning data right next to the place of usage

● Significant CPU offload – especially for big crowds

● Hierarchical data structures with interdependencies

● Pretty low occupancy on pointers chasing – overlap as much as possible

● Start next frame simulation right after the last geometry pass

● Manageable GPU hit

Animation on GPU Results

Next steps:

● Revise data layout for animation structures

● Skin geometry only once

Memory Offline

CPU*

Run-time

CPU*

GPU

From 1.01 Mb 14.96 ms 5.89 ms 17.95 ms

To 0.77 Mb 13.49 ms 5.53 ms 18.06 ms

Type Relative Count Memory CPU

Mobile instances 70.11% 3160 ~0.51 Mb 4.96 ms

Mutual instances 10.43% 470 ~0.08 Mb 0.33 ms

Skinned instances 19.46% 877 ~0.18 Mb 0.24 ms

(*Xbox One numbers)

Decouple CPU and GPU for mobile, mutual, and skinned instances to

minimize data transfer and synchronization points

Instance State Generation on GPU

● Use Bullet Physics with GPU simulation support

● Split mobile instances further

● Introduce CPU invisible/visible physical instances

● Explicitly tag CPU invisible instances

● Code driven solution – not easy to find tagging approach

● Sync CPU visible instances and simulate the rest

● GPU simulation faster than CPU most of the time

Rigid Body Physics on GPU Results

● Significant CPU offload

● Manageable GPU hit - perfectly overlaps with PP stack

● High code complexity

(*Xbox One numbers)

Memory Offline

CPU

Run-time

CPU

GPU

From 0.77 Mb 13.49 ms 5.53 ms 18.06 ms

To 0.52 Mb 12.17 ms 5.06 ms 18.25 ms

Type Relative Count Memory CPU

CPU visible mobile

instances

53.33% 1539 ~0.26 Mb 4.54 ms

Mutual instances 16.29% 470 ~0.08 Mb 0.31 ms

Skinned instances 30.38% 877 ~0.18 Mb 0.21 ms

Geometry Rendering Passes Overview

Apply micro

patches N

Virtual Texture

pass N

Gbuffer pass

N

Shadows

pass N
Other passes N

Rigid body

physics N+1

Animation

N+1

Async Compute

Graphics / Compute

Frame N Frame N + 1

(*Xbox One numbers)

Memory CPU GPU

Base line 1.05 Mb 51.43 ms 22.17 ms

To result 0.57 Mb 16.94 ms 17.02 ms

Virtual Texturing

VT request

feedback

Analyze VT

requests

Process and send

loaded pages

Issue pages

loading

Push texture

data to cache

CPU

GPU

VT cache

Mega-atlas

Render

geometry

Frame NFrame N - 1

Virtual Texturing

● Access to all the texture data at once

● Generally lower memory usage and data transfer pressure

than common texture streaming techs

● Drastically improves “batching” efficiency of the GPU

Driven Rendering

● Replacement for the bindless textures available for some

platforms/APIs

Virtual Texturing

Virtual Texturing

VT Mega Atlas

Virtual Texturing

VT Mega Atlas

Virtual Texturing

VT Page

VT Mega Atlas

Virtual Texturing

VT request

feedback

Analyze VT

requests

Process and send

loaded pages

Issue pages

loading

Push texture

data to cache

CPU

GPU

VT cache

Mega-atlas

Render

geometry

Frame NFrame N - 1

How to get this?

Virtual Texturing – Dedicated Pass

● Use special camera for the VT Page Request pass

● Streaming prediction, textures preloading, etc.

● Requires extra viewport culling

● Rasterize geometry twice to generate Page Request RT

● Smaller render target (1/4 + jitter)

● Store page requests (x coordinate, y coordinate, mip)

● Analyze on CPU and generate loading requests

Virtual Texturing – Dedicated Pass

Lighting Buffer Page Request Buffer

Virtual Texturing – Part of GBuffer

● Use fat GBuffer layout

● Add extra 32-bits to GBuffer

● Extra memory bandwidth

● One visible geometry rasterization pass

● Less shaders, same code-path for page request and page usage

● Compute pass to downscale / filter page request buffer

Virtual Texturing – Part of GBuffer

Page Request Buffer

Virtual Texturing – “In-place PR”

● Replace render target with two UAV buffers

● Bloom filter buffer

● Page requests buffer

● Move PR filtering, sorting, etc. to GPU and delegate it to

each pixel in GBuffer

● Allows to shave some time from CPU

● Page requests for transparent passes, alpha blended

passes, etc.

Virtual Texturing – “In-place PR”
uint triplet = encodePageRequestTriplet(pageRequest);

uint tripletHash = fnv1AHash32(triplet, g_vtBloomFilterSeed);

uint bloomBitIndex = tripletHash % g_vtBloomFilterSize;

uint bloomWordIndex = bloomBitIndex / 32;

uint bloomWordMask = 1 << (bloomBitIndex % 32);

if (!(VTBloomFilter[bloomWordIndex] & bloomWordMask)) {

uint previous = 0;

InterlockedOr(VTBloomFilter[bloomWordIndex], bloomWordMask, previous);

if (!(previous & bloomWordMask)) {

uint index = 0;

InterlockedAdd(VTFilteredPages[0], 1, index);

VTFilteredPages[index + 1] = triplet;

}

}

Virtual Texturing

● Trials Rising ended up using “In-place PR”

● This change allowed to shave about 3-5 ms of CPU time

from every odd frame (Xbox One timings)

● Can cause extra texture loading latency that must be taken

into account

● Semi-transparencies can be placed in Mega-Texture

● Great shaders code simplification

Virtual Texture Scalability

● Page requests per frame dictates ”performance” of the

system

● Highly depends on rendering resolution and VT pages cache size

● Both parameters can be controlled in “online” and “offline” settings

Virtual Texture Mip Bias

VT mip bias can be controlled by CPU and GPU
float computeMipBias()

{

#if defined(USE_GLOBAL_MIP_BIAS_ONLY)

// Directly fetch global mip bias

float mipBias = g_mipBias;

#else

// Combine global mip bias and per-instance mip bias

float mipBias = g_mipBias + gp_mipBias;

#endif

// Restrict mip bias

mipBias = max(mipBias, g_mipBiasMinimum);

return mipBias;

}

Virtual Texture Mip Bias

VT mip bias can be controlled on CPU and GPU

float mipMapLevel(float2 coordinates, float2 size, float bias)

{

// Hacky anisotropic emulation

const float anisotropicSize = size.x * 0.7071;

const float2 dx = ddx(coordinates * anisotropicSize);

const float2 dy = ddy(coordinates * anisotropicSize);

const float d = dot(dx, dx) + dot(dy, dy);

return 0.5 * log2(d) + bias;

}

Virtual Texture Page Cache Size

● Static configuration per platform

● Can be of arbitrary size and even changed dynamically

Platform Page Cache Size Memory Consumption

Xbox One Base 8k x 8k 3 x 64 Mb = 192 Mb

Xbox One S 8k x 8k 3 x 64 Mb = 192Mb

Xbox One X 16k x 8k 3 x 128 Mb = 384 Mb

PS4 Base 8k x 8k 3 x 64 Mb = 192 Mb

PS4 Pro 16k x 8k 3 x 128 Mb = 384 Mb

Switch 8k x 4k 3 x 32 Mb = 96 Mb

GPU Driven Rendering Scalability

● Computation part of the GPU pipeline very fast

● Culling and geometry assemble scales with GPU clock and memory

bandwidth/latency

● Rasterization is based on resolution and scales pretty well

● GPU pipeline requires specific data path for CPU-GPU

● Memory bandwidth hit from instances synchronization

● Batches with small amount of instances overhead is higher than the

actual work

GPU Driven Rendering Scalability
● Use more aggressive culling settings for distant objects for low end

platforms

● Adjust level of details in runtime depending on CPU/GPU load

Future - High-level Batch Rendering
● Many indirect parameters generation passes

● This pipeline repeated for each batch

Frustum instance

culling

Cluster occlusion

cullingCluster fitting

Indirect parameters generation

Draw clusters

Indirect parameters generation

Cluster instance

culling

Index buffer building

Indirect parameters generation

Indirect parameters generation Indirect parameters generation

Index buffer building

Indirect parameters generation

Draw clusters

Future - High-level Batch Rendering

Idea is to bake passes in command list and use it for each

batch

Frustum instance

culling

Cluster occlusion

cullingCluster fitting

Indirect parameters generation

Draw clusters

Indirect parameters generation

Cluster instance

culling

Index buffer building

Indirect parameters generation

Indirect parameters generation Indirect parameters generation

Index buffer building

Indirect parameters generation

Draw clusters

Passes packed in one entity – command list

Future - Command List to Render a Scene

● GPU pipeline commands sequence almost constant every frame

● Commands do not change based on scene structure

● Draw calls count predictable and reasonably low

● Manageable maximum index buffer size

● Worst measured memory overhead is about 6%

● Record GPU pipeline commands for all possible butches in

nested command list

Execute GPU Pipeline Command List

Gbuffer rendering

Execute GPU

pipeline

(GBuffer pass)

Baked Gbuffer GPU

pipeline command list

Shadow rendering

Baked shadow GPU

pipeline command list

Execute GPU

pipeline

(Cascade 0 pass)

Execute GPU

pipeline

(Cascade 1 pass)

Baking Results

Test scene Memory GPU CPU

Construction Site Scene +2.14% -0.05 ms -0.21 ms

Scene with small differences by

instances types

+0.42% -0.08 ms -0.13 ms

Scene with high differences by

instances types

+5.13% +0.02 ms -0.34 ms

First scene with medium differences

by instances types

+1.46% -0.06 ms -0.19 ms

Second scene with medium

differences by instances types

+3.58% +0.01 ms -0.26 ms

(*Xbox One numbers)

Future – Device Generated Commands

● NVidia extension for Vulkan to populate command list on GPU

● https://developer.nvidia.com/device-generated-commands-vulkan

● Possibility to compose GPU pipeline commands conditionally

● More flexibility with PSO selection on GPU

● Possibility to switch PSO with compile time optimization based on

runtime condition

● Possibility to avoid empty draw chains

● Decreased reserved memory size

Generate GPU Pipeline Command List on GPU

Gbuffer rendering

Pipeline layout

Prepare pipeline layout

and object table

Object table

Reserve command

list spaceCPU

GPU

Command list

Generate

commands

Frame N Frame N + 1

GPU Side Generation Results

Test scene Memory GPU CPU

Construction Site Scene +0.76% -0.03 ms -0.32 ms

Scene with small differences by

instances types

+0.11% -0.05 ms -0.18 ms

Scene with high differences by

instances types

+1.22% +0.03 ms -0.39 ms

First scene with medium differences

by instances types

+0.45% -0.07 ms -0.21 ms

Second scene with medium

differences by instances types

+1.08% +0.02 ms -0.33 ms

(*Xbox One numbers)

Visual Fidelity Comparison
Visual quality unlocked by Virtual Texturing
and GPU Driven Rendering techs

Visual Fidelity Comparison
Visual quality unlocked by Virtual Texturing
and GPU Driven Rendering techs

Conclusions

● GPU Driven Rendering and Virtual Texturing work

great together

● It’s easy to implement GPU Pipeline but hard to make

it fast with a specific engine

● Debugging utilities are must have

● Virtual Texturing might be painful for the art pipeline

● GPU Pipeline surprisingly aligned with Ray Tracing

Special Thanks

● Code

● Jussi Knuuttila, Anton Remezenko, Milos Tosic

● Presentation

● Christina Coffin, Stephen McAuley

● Oleksandr Shvyrlo, Mickael Godard, Michael Ockenden

● Entire Trials Rising team

Thank you! Дякую!

Questions?

oleksandr.drazhevskyi@ubisoft.com

References

● “GPU-Driven Rendering Pipelines”, Haar & Aaltonen, SIGGRAPH

2015

● “Optimizing the Graphics Pipeline with Compute”, Wihlidal, GDC

2016

● “Deferred+: Next-Gen Culling and Rendering for Dawn Engine”,

Bucci & Doghramachi, Eidos Montreal

● “GPU-Based Scene Management for Rendering Large Crowds”,

Barczak at al., AMD

References

● “March of the Froblins: Simulation and Rendering Massive

Crowds of Intelligent and Detailed Creatures on GPU”, Shopf at

al., SIGGRAPH 2008

● “Large-Scale Physics-Based World Simulation Using Adaptive

Tiles on the GPU”, Vanek, IEEE Computer Graphics and

Applications 2011

● “GCN Shader Extensions for Direct3D and Vulkan”, Matthaeus

Chajdas, GPUOpen.com, 2016

