
Breaking Down Barriers: 
An Intro to GPU Synchronization

Matt Pettineo
Lead Engine Programmer 

Ready At Dawn Studios



Who am I?

● Ready At Dawn for 9 years

● Lead Engine Programmer for 5

● I like GPUs and APIs!

● Lots of blogging, Twitter, and GitHub

● You may know me as MJP!



What is this talk about?

● GPU Synchronization!

● What is it?

● Why do you need it?

● How does it work?

● How does it affect performance?



Barriers in D3D12/Vulkan

● New concept!

● Annoying 

● D3D11 didn’t need them!

● Difficult

● People keep talking about them

● Affects performance

● But why? And how?



CPU Thread Barriers

● Thread sync point

● “Wait until all threads get here”

● Spin wait

● OS primitives 

● Barrier is a toll plaza



CPU Memory Barriers

● Ensure correct order of reads/writes

● Ex: write finishes before barrier, read happens after

● Affects CPU memory ops 

● and compiler ordering!

● Barrier is a doggie gate



What’s The Common Thread?

● Dependencies!

● Task A produces something

● Task B consumes something

● Task B depends on Task A

● Results need to be visible to dependent tasks!



Single-Threaded Dependencies

● int a = GetOffset(); int b = myArray[a];

● The compiler + CPU have your back!

● Automatic dependency analysis

● No need for manual barriers

● Expected ordering on a single core

● Easy mode



Multi-Threaded Dependencies

● Dependencies no longer visible!

● Arbitrary numbers of threads

● Free-for all memory access

● CPU mechanisms break down

● Per-core store buffers and caches

● Everyone has failed you

● You’re on your own



Task Dependencies

Core 0

Core 1

Get Bread

CPU

Spread Peanut Butter

Tasks Overlap!



Task Dependencies

Core 0

Core 1

Get Bread

CPU

Spread Peanut Butter

No Overlap!

Barrier



GPU Parallelism

● GPU is not a serial machine!

● Looks are deceiving

● HW and drivers help you out







GPUs are Thread Monsters!



GPUs are Thread Monsters!

● Lots of overlapping when possible

● No dependencies

● Re-ordering for render target writes (ROPs)

● Overlap improves performance!

● More on this later



GPU Thread Barriers

● Dependencies between draw/dispatch/copy

● Wait for batch of threads to finish

● Same as CPU task scheduler

● Often called “flush”, “drain”, “WaitForIdle”



GPU Cache Barriers

● Lots of caches!

● Not always coherent!

● Different from CPU’s

● Flush and/or invalidate
to ensure visibility

● Batch your barriers!

Uh oh



GPU Compression Barriers

● HW-enabled lossless compression

● Delta Color Compression (DCC)

● Saves bandwidth

● (may) Decompress for read

● Decompress for UAV write



D3D12 Barriers

● Higher level - “resource state” abstraction

● Texture is in an SRV read state

● Buffer is in a UAV write state

● Mostly describes resource visibility

● Implicit dependencies from state transition

● Layout/compression also implied



Vulkan Barriers

● More explicit (verbose) than D3D12

● Specifies

● Producing/consuming GPU stage

● Read/write state

● Texture layout



D3D12/Vulkan Barriers

● Both abstract away GPU specifics

● Both let you over-sync/flush/decompress

● RGP will show you!

● PIX can warn you!



What about D3D11?

● Driver tracked dependencies!

● Like a run-time compiler

● Easy mode

● Lots of CPU work!

● Hard to do multithreaded

● Requires CPU-visible resource binding

Incompatible with 
D3D12/Vulkan!



Let’s Make a GPU!

10 cy

Current 
Cycle 
Count

Shader 
Cores

Memory

Introducing: The MJP-3000

The Muscle

The Brains

Command 
Buffer

Current 
Command

Command 
Processor

Thread 
Queue



MJP-3000 Limitations

● Compute only

● Only 16 shader cores

● No SIMD

● No thread cycling

● No caches



Simple Dispatch Example

● Dispatch 32 threads

● Each thread writes 1 element to memory



Simple Dispatch Example

NOP

NOP

DISPATCH(A, 32)

0 cy



Simple Dispatch Example

NOP

NOP

DISPATCH(A, 32)

0 cy

32 Dispatch 
threads 

enqueued



Simple Dispatch Example

NOP

NOP

DISPATCH(A, 32)

0 cy

16

Shader cores 
execute threads 

from queue



Simple Dispatch Example

NOP

NOP

NOP

100 cy

16
DISPATCH(A, 32)

Threads write 
data to 

memory



Simple Dispatch Example

NOP

NOP

NOP

100 cy

DISPATCH(A, 32)

Remaining 
threads start 

executing



Simple Dispatch Example

NOP

NOP

NOP

200 cy

NOP

All threads are 
done writing 
to memory



Thread Barrier Example

● Dispatch B is dependent on Dispatch A

● We can’t have any overlap!

● New command: FLUSH

● Command processor waits for thread queue and 
shader cores to become empty



Thread Barrier Example

FLUSH

DISPATCH(B, 24)

DISPATCH(A, 24)

0 cy



Thread Barrier Example

FLUSH

DISPATCH(B, 24)

DISPATCH(A, 24)

0 cy

8



Thread Barrier Example

DISPATCH(B, 24)

NOP

FLUSH

100 cy

DISPATCH(A, 24)

FLUSH waits for 
queue to empty

No overlap! Cores are idle!



Thread Barrier Example

NOP

NOP

DISPATCH(B, 24)

200 cy

FLUSH



Thread Barrier Example

NOP

NOP

DISPATCH(B, 24)

200 cy

FLUSH
24



Thread Barrier Example

NOP

NOP

DISPATCH(B, 24)

200 cy

8
FLUSH



Thread Barrier Example

NOP

NOP

NOP

300 cy

NOP



Thread Barrier Example

NOP

NOP

NOP

400 cy

NOP



Thread Barrier Example

● FLUSH prevented overlap 

● …but cores were 50% idle for 200 cycles

● 75% overall utilization 

● Took 400 cycles instead of 300 cycles 



The Cost of a Barrier

● Barrier cost is relative to the drop in utilization!

● Gain from removing a barrier is relative to % 
of idle shader cores

● Larger dispatches => better utilization

● Longer running threads => high flush cost

● Amdahl’s Law



D3D12/Vulkan Barriers are Flushes!

● Expect a thread flush for a transition/pipeline 
barrier between draws/dispatches

● Same for a D3D12_RESOURCE_UAV_BARRIER

● Try to group non-dependent draws/dispatches 
between barriers

● May not be true for future GPUs!



Overlapping Dispatches Example

● Dispatch B still dependent on Dispatch A

● Dispatch C dependent on neither

● Let’s try to recover some perf from idle cores



Overlapping Dispatches Example

DISPATCH(C, 8)

FLUSH

DISPATCH(A, 24)

0 cy



Overlapping Dispatches Example

FLUSH

DISPATCH(B, 24)

DISPATCH(C, 8)

0 cy

8

8

DISPATCH(A, 24)



Overlapping Dispatches Example

DISPATCH(B, 24)

NOP

FLUSH

100 cy

DISPATCH(C, 8)

Threads from 
Dispatch C keep 
our cores busy!



Overlapping Dispatches Example

NOP

NOP

NOP

200 cy

8
NOP



Overlapping Dispatches Example

NOP

NOP

NOP

300 cy

NOP



Overlapping Dispatches Example

NOP

NOP

NOP

400 cy

NOP



Overlapping Dispatches Example

● Same latency for Dispatch A + Dispatch B

● But we got Dispatch C for free!

● Overall throughput increased

● Saved 100 cycles vs. sequential execution

● 75%->87.5% utilization!



Insights From Overlapping

● What if we think of the GPU as a CPU?

● Each command is an instruction

● Overlapping == Instruction Level Parallelism

● Explicit parallelism, not implicit

● Similar to VLIW (Very Long Instruction Word)



Bad Overlap Example

DISPATCH(C, 8)

FLUSH

DISPATCH(A, 24)

0 cy



Bad Overlap Example

FLUSH

DISPATCH(B, 24)

DISPATCH(C, 8)

0 cy

8

8

DISPATCH(A, 24)



Bad Overlap Example

DISPATCH(B, 24)

NOP

FLUSH

200 cy

DISPATCH(C, 8)

Uh oh



Bad Overlap Example

NOP

NOP

DISPATCH(B, 24)

500 cy

8
FLUSH



Bad Overlap Example

NOP

NOP

NOP

600 cy

NOP



Bad Overlap Example

NOP

NOP

NOP

700 cy

NOP



What Happened?

● 400 cycles with 50% idle cores

● 71.4% utilization

● 1 CP -> 1 queue -> global flush/sync

● B wanted to sync on A, but also synced on C

● Re-arranging could help a bit

● But wouldn’t fix the issue



Why Not Two Command Processors?



Upgrading To The MJP-4000

FLUSH

DISPATCH(D, 8)

24

DISPATCH(C, 8)

FLUSH

24

DISPATCH(E, 16)

FLUSH

DISPATCH(A, 24)

FLUSH

8

Second Front End



Introducing The MJP-4000

● Two front-ends

● Two command processors for syncing

● Two thread queues

● Two independent command streams

● Still 16 shader cores

● Max throughput same as MJP-3000

● First-come first-serve for thread queues



Dual Command Stream Example

● Dispatch A -> 68 threads, 100 cycles

● Dispatch B -> 8 threads, 400 cycles

● B depends on A

● Dispatch C -> 80 threads, 100 cycles

● Dispatch D -> 80 threads, 100 cycles

● D depends on C

Independent command streams



Dual Command Stream Example

DISPATCH(A, 68)

24

FLUSH

DISPATCH(B, 8)

0 cy

First command 
stream 

submitted



Dual Command Stream Example

FLUSH

24

DISPATCH(B, 8)

50 cy

FLUSH

DISPATCH(D, 80)

DISPATCH(C, 80)

DISPATCH(A, 68)

52

80

All cores are busy 
– threads stay in 

the queue

Second command 
stream submitted



Dual Command Stream Example

FLUSH

24

DISPATCH(B, 8)

100 cy

DISPATCH(D, 80)

FLUSH

DISPATCH(A, 68)

52

DISPATCH(C, 80)

80

Cores are free –
queues will split 
available cores



Dual Command Stream Example

FLUSH

24

DISPATCH(B, 8)

100 cy

DISPATCH(D, 80)

FLUSH

DISPATCH(A, 68)

44

DISPATCH(C, 80)

72



Dual Command Stream Example

FLUSH

24

DISPATCH(B, 8)

600 cy

DISPATCH(D, 80)

FLUSH

DISPATCH(A, 68)

DISPATCH(C, 80)

28

Dispatch A has only 4 threads 
left, but Dispatch C keeps the 

remaining cores busy!



Dual Command Stream Example

DISPATCH(B, 8)

24
700 cy

DISPATCH(D, 80)

FLUSH

FLUSH

DISPATCH(C, 80)

12

8



Dual Command Stream Example

DISPATCH(B, 8)

24
800 cy

DISPATCH(D, 80)

FLUSH

FLUSH

DISPATCH(C, 80)

4

Dispatch B can only 
saturate half the cores, but 
Dispatch C can fill the rest!



Dual Command Stream Example

DISPATCH(B, 8)

24
900 cy

DISPATCH(D, 80)

FLUSH

FLUSH

DISPATCH(C, 80)



Dual Command Stream Example

DISPATCH(B, 8)

24
1000 cy

DISPATCH(D, 80)

FLUSH

FLUSH

72

Dispatch D continues to keep 
the remaining 8 cores busy



Dual Command Stream Example

DISPATCH(B, 8)

24
1200 cy

DISPATCH(D, 80)

FLUSH

FLUSH

48



Dual Command Stream Example

DISPATCH(B, 8)

24
1600 cy

DISPATCH(D, 80)

FLUSH

FLUSH



Did Two Front-Ends Help?

● It sure did!

● ~98% utilization!

● No additional cores

● Lower total execution time for 
A + B + C + D

● Higher latency for A+B or C+D
submitted individually



Even Better For Real GPUs!

● Threads stalled on memory access

● Real GPU’s will cycle threads on cores

● Idle time from cache flushes

● Tasks with limited shader core usage

● Depth-only rasterization

● On-Chip Tessellation/GS

● DMA



Thinking in CPU Terms

● Multiple front-ends ≈ SMT

● Simultaneous Multithreading (Hyperthreading)

● Interleave two instruction streams that share 
execution resources

● Similar goal: reduce idle time from stalls



Real-World Example: Bloom + DOF

Downscale Blur H Blur VDownscale Upscale Upscale

Main Pass Tone Mapping

Setup Downscale Bokeh Gather Flood Fill

Independent command streams



Real-World Example: Bloom + DOF

Downscale Blur H Blur VDownscale Upscale UpscaleMain Pass Tone Mapping

Command Processor 0

Command Processor 1

Setup Downscale Bokeh Gather Flood Fill

Queue-Local Barriers

Cross-Queue Barriers



Submitting Commands in D3D12

● App records + submits command list(s)

● With fences for synchronization

● OS schedules commands to run on an engine

● Engine = driver exposed HW queue

● Direct, compute, copy, and video

● HW command processor executes commands



Bloom + DOF in D3D12

Downscale Blur H Blur VDownscale Upscale UpscaleMain Pass Tone Mapping

Command Processor 0

Command Processor 1

Setup Downscale Bokeh Gather Flood Fill

Queue-Local Barriers

Cross-Queue Barriers



Bloom + DOF in D3D12

Downscale Blur H Blur VDownscale Upscale UpscaleB B B B BMain Pass Tone Mapping

Direct Queue

Compute Queue

Setup Downscale Bokeh Gather Flood Fill

F
E
N
C
E

B B B

F
E
N
C
E

GfxCmdListA

GfxCmdListB GfxCmdListC

ComputeCmdList



D3D12 Multi-Queue Submission

● Submissions to multiple command queues 
will possibly execute concurrently

● Depends on the OS scheduler

● Depends on the GPU

● Depends on the driver

● Depends on the queue/command list type

● Similar to threads on a CPU



D3D12 Virtualizes Queues

● D3D12 command queues ≠ hardware queues

● Hardware may have many queues, or only 1!

● The OS/scheduler will figure it out for you

● Flattening of parallel submissions

● Dependencies visible to scheduler via fences

● Check GPUView/PIX/RGP/Nsight to see what’s 
going on!



Vulkan Queues Are Different!

● They’re not virtualized!

● …or at least not in the same way

● Query at runtime for “queue families”

● Vk queue family ≈ D3D12 engine

● Explicit bind to exposed queue

● Still not guaranteed to be a HW queue



Using Async Compute

● Fills in idle shader cores

● Just like our MJP-4000 example!

● Identify independent command streams

● …and submit them on separate queues

● Works best when lots of cores are idle

● Depth-only rendering

● Lots of barriers



Recap



GPU Barriers Ensure Data Visibility

● Probably involves GPU thread sync

● Maybe involves cache flushes

● Maybe involves data transformation

● Decompression

● API barriers describe visibility + dependencies

● Think about your dependencies! (or visualize them!)



GPUs Aren’t That Different

● Command processor = task scheduler

● Shader cores = worker cores

● Multi-core CPU’s have similar problems!

● Parallel operations

● Coherency issues



Barriers = Idle Cores

● Keep the thread monster fed!

● Waits/stalls decrease utilization

● Careful barrier use => higher utilization

● Watch out for long-running threads!

● Batch your barriers!

● Flushing cache once >>> flushing multiple times



Using Multiple Queues

● Parallel submissions may increase utilization

● Not guaranteed! – check your tools!

● Won’t magically increase the core count

● Look for independent command streams

● Don’t go crazy with D3D12 fences



That’s It!

● Thanks to…

● Ste Tovey

● Rys Sommefeldt

● Nick Thibieroz

● Andrei Tatarinov

● Everyone at Ready At Dawn



Contact Info

● matt@readyatdawn.com

● mpettineo@gmail.com

● @mynameismjp

● https://mynameismjp.wordpress.com/

● https://github.com/TheRealMJP/GDC2019_Public

● Includes pptx and PDF with full speaker notes

mailto:matt@readyatdawn.com
mailto:mpettineo@gmail.com
https://mynameismjp.wordpress.com/
https://github.com/TheRealMJP/GDC2019_Public

