
Why Survios Builds New Tech
For Every Title & Why You
Should Too 
 
ALEX SILKIN  
Co-Founder / Chief Technology Officer

Key Takeaways

1. How to grow a flexible and extensible codebase for cross-platform
VR game development

2. Mistakes to avoid

3. Examples of some of our foundational technologies

Previous Titles

Newest Titles

Interaction System

Interaction Positioning

Marionette

Weapon System
 Modular and portable - use for all player and weapon guns as well as autonomous turrets

 Firemode component
● Automatic
● Burst Fire
● Spooling
● Charge Shot

 Damager Component
● Raytrace (hitscan)
● Projectile
● Volume Based

 Ammo System

 Firing Effects

Damage Systems
Damageable
● Per body region health
● Custom attributes (eg armor)
● Supports dismemberment and headshots

Hit Reaction
● Associate damage events with appropriate
response
● Play animation
● Ragdoll physicalization
● Rotate according to damage direction

Multiplayer
All our gameplay systems are built with multiplayer in mind

Homegrown solutions for online services
● Dedicated Servers
● PC crossplatform
● Leaderboards

Porting Raw Data to PS VR
PS VR came out during Raw Data early access - we decided to port mid development!

Avoid porting - develop for most constrained platform as lead SKU

Performance
● Actor pooling system
● UMG Widget pooling system
● Async overlap system

Button mapping
● Redesign some mechanics
● Had to explicitly check for platform to determine button behavior

Inventing Fluid Locomotion

Focus Testing

Inventing Phantom Melee Tech

Sprint Vector & Creed Post Mortem
Problem: Majority of code is shared through one Survios plugin

Flexibility and Extensibility Issues:
● Too many assumptions about different games’ structure and needs
● Difficult to refactor/extend/replace/debug systems in isolation

Solutions:
● Get rid of base classes (SVRGameMode, SVRGameState, SVRPawn, SVRPlayerState)
● Decouple systems into separate independent plugins with abstraction layers
● Template provides sample configuration of systems for projects to branch from

The Great Pluginification
Contents of old Survios plugin 37 Current Plugins

Vehicular Locomotion

ECS Projectile System

Projectile Definition
Heavy use of editinlinenew instanced subobjects in a data asset

SVRProjectileDefinitionDataAsset
●SVRDamageAccessBase
●SVRProjectileMovementBase
●SVRProjectileCollisionBase
●SVRProjectileFXBase

Projectile Manager
ASVRProjectileManager
•FSVRProjectileCollection array
•SVRProjectileDefinitionDataAsset
•FSVRProjectileInstance array
•Transform
•Velocity

Damage Decal Composition

Damage Decal Example

Future Developments

Player Movement Refractor
Completely detach from UE native CharacterMovementComponent

A state machine approach:
● Locomotion schemes encapsulated within USVRMovementState subclasses
● “Additive” movement state, ie USVRTurnInPlaceAdditiveMoveState for artificial yaw rotation

Input handling for each state implemented in a separate object that extends USVRMovementStateInputManager

SVRInput System
INI config binding based - built on top of Unreal Engine vanilla implementation

System dynamically modifies input mappings in response to:
● Which motion controller (important on PC)
● Control scheme variant selection
● Dominant hand selection (left hand vs right hand)

Input components explicitly enabled for left vs right hand
● Convenient for interaction system when you can grab objects with either or both hands

Example Raw Data Binding
C++ code initializing a player’s hand actor:

Example SVRInput Binding
Settings in DefaultInput.ini for fluid locomotion:

Conclusion
● Break-up systems into decoupled modular blocks

● Always keep multiplayer and multiplatform in mind

● Stay nimble

● Think about future games

Thank you.

