
GDC 2020

Writing Tools Faster
Design Decisions to Accelerate Tool Development

Niklas Gray
CTO, Our Machinery, @niklasfrykholm

Who am I?

My name is Niklas Gray, I write game engines:

Diesel In-house engine at Grin (Ghost Recon, Payday)
Bitsquid Commercial game engine (Vermintide, Helldivers)
Stingray Bitsquid rebranded by Autodesk
The Machinery Let's make another game engine!

In This Talk

Why is writing tools so hard? (for us)
What can we do about it?

Tools: A Brief History of Failure

Bitsquid 1.0: Our Users Can Make Their Own Tools!

Bitsquid 2.0

Let's hack together something quickly in WinForms
Kind of ugly
No clear overall plan, hard to maintain

Bitsquid 3.0

WPF is prettier!
Tools take longer to write
Barrier of entry: WPF, XAML, ...
Never fully completed rewrite from WinForms

Stingray

Web platform (in theory)
Platform independent
Reuse web expertise

Tech stack getting crazy
C#, Lua, C++, WPF,
WinForms, Chromium,
Qt, JavaScript,
Angular, WebSockets

Tools take even longer
Never completed this rewrite either!

Bitsquid/Stingray Problems

1. Keep changing frameworks
2. Tools take too long to write
3. Lackluster performance

End result: Bad tools!

How do we fix it?

Why Change Frameworks?

Sometimes: bad decisions
Sometimes: tech gets outdated or abandoned

Swing, Delphi, Hypercard, Flash, NaCl, Python 2, ...
Running on abondoned tech gets painful

Why Did Writing Tools Take So Long?

Every little thing needed an UI (designed, coded, tested)
Features: Undo, copy/paste, serialize, drag-and-drop, ...
A deep tech stack is hard to understand

Bug in Angular, JavaScript, WebSocket, Chromium, C#, Lua or C++?
Complicates everything!

Only tool people understood the tool stack: silos

Why Did We Have Performance Problems?

Standard web practices didn't always work
Not always a performance mind set
Game development has more stuff!

Fixing performance often required a full rewrite
The deep stack made the issues harder to find

How Do We Fix it?

Automate undo, copy/paste, etc with a well-defined data model
Less busy-work

Minimize and own the tech stack
Make things explicit and easy to understand
Avoid changing frameworks
Control performance

Reuse UIs and generate them automatically from data
Properties, Tree, Graph, etc
Don't have to create an UI for everything.

Data Model

The Truth

Represent all data in a uniform way
Operations (Undo, etc) can be defined on the data model

Objects with Types and Properties: (reference, subobject)

Lock-Free Multithread Access

Changing the data is a two phase process: write/commit
Write creates a new copy of the object for modification
Commit atomically switches the old copy for the new
Readers can read the data without locking

Old read copies eventually garbage collected

W = begin_write(O)
set_property(W, NAME, "Niklas")
set_property(W, AGE, 46)
commit(W)

Undo

On Commit – save the old and new object versions in current undo scope
On Undo – reinstate the old data
An undo scope can contain multiple changes to different objects

US = create_undo_scope(T)
W = begin_write(O)
set_property(W, NAME, "Niklas")
set_property(W, AGE, 46)
commit(W, US)

undo(T, US)

Prefabs/Prototypes

An object can specify another object as its prototype
"Inherits" properties, but can "override" them

US = create_undo_scope(T)
OLDER_ME = create_object_from_prototype(T, ME, US)
W = begin_write(OLDER_ME)
set_property(W, AGE, 47)
commit(W, US)

Live Collaboration

On commit – compute a delta between old and new object versions
Transmit delta over wire to other collaborators

Collaboration Video

0:00 / 0:29

The Truth: Pros & Cons

Lots of functionality "for free"
Even advanced features: collaboration, prototyping

Cons

Some data is not represented well in key-value format (e.g. long text)
The system is complex and sits at the center of everything

No easy way for other systems to "opt-out"
Scary to make modifications

Minimized Tech Stack

Our Stack

Everything is written in C
Very few external dependencies

Draw 2D: 2D Drawing Library For UI

stroke_rect(), fill_rect(), etc
Writes data directly into vertex buffer & index buffer
Entire UI rendered in a single draw call
https://ourmachinery.com/post/ui-rendering-using-primitive-buffers/

https://ourmachinery.com/post/ui-rendering-using-primitive-buffers/

Draw 2D: Clipping

Clip rects are written to the vertex buffer
Pixel shader clips against rect

Draw 2D: Overlays

Overlay images (popups) are drawn to a separate index buffer
Concatenated before submitting draw call
Note: overlay will be clipped to window

UI

Immediate mode GUI – no create/destroy
Single call to draw control and handle interaction

if (ui_api->button(ui, &(ui_button_t){.rect = button_r, .text = "OK"}))
 logger_api->printf(LOG_TYPE_INFO, "OK was pressed!");

bool cb = false;
ui_api->checkbox(ui, &(ui_checkbox_t){ .rect = box_r, .text = "Check!" }, &cb);

Every control is drawn every frame
Controls don't have permanent existence, but they're identified by an ID
We keep track of the ID the user is hovering over or interacting with

IMGUI: Pros & Cons

More straightforward code flow (debugging, profiling)
No need to synchronize state
Redraw every frame -- expensive?

Viewport typically wants to render every frame anyway
Can do it just on mouse/keyboard events
Easy to match performance to what is shown on screen

New mindset: no objects to talk to
Can usually find ways around it

0:00 / 0:48

IMGUI Gotchas Example: Overlap

In retained: we would just loop over all nodes
We can't do: if (in_rect(mouse,r) && button_down)

Node 1 would get click that should go to Node 2
Fix: frame delay

if (in_rect(mouse, r))
 ui.next_hover = id;
if (ui.hover == id && button_down)
 ...;

At end of frame: ui.hover = ui.next_hover
Node 2 will overwrite ui.next_hover

Layouting

// No need for "layout managers" -- instead we split rects directly in code

rect_t header_r = rect_split_off_top(r, header_height, margin);
rect_t search_r = rect_split_off_right(header_r, search_width, margin);
rect_t footer_r = rect_split_off_bottom(r, footer_height, margin);

rect_t tree_r, browser_r;
ui_api->splitter_x(ui, &(ui_splitter_t){.rect = r}, &bias, &tree_r, &browser_r);

0:00 / 0:06

Custom Controls

Easy to implement custom control: draw + input interaction
No distinction between "built-in" and "custom" controls

0:00 / 0:12

 static void ui_drag_number(ui_o *ui, uistyle_t *style, const ui_drag_number_t *c, float *value) {
 ui_buffers_t uib = ui_api->buffers(ui);
 const uint64_t id = c->id ? c->id : ui_api->make_id(ui);

 if (vec2_in_rect(uib.input->mouse_pos, c->rect) && !uib.activation->next_hover_in_overlay)
 uib.activation->next_hover = id;

 if (uib.activation->hover == id && uib.input->left_mouse_pressed)
 ui_api->set_active(ui, id);

 if (uib.activation->active == id) {
 const float dx = uib.input->mouse_delta.x;
 *value = active->original_value + dx / 50.0f * fabsf(active->original_value);
 if (uib.input->left_mouse_released)
 ui_api->set_active(ui, 0);
 }

 if (uib.activation->active == id || uib.activation->hover == id)
 style->color = colors[UI_COLOR_SELECTION];

 char text[32];
 sprintf(text, "%.7g", *value);
 draw2d_api->draw_text(uib.vbuffer, *uib.ibuffers, style, c->rect, text, n);
}

In Summary

Full control of the stack – easier to understand
Same language/API as rest of engine, no artificial barriers

Cons:

You start from scratch (~6 man-months of work)
Initial cost is soon recouperated
Could use Dear IMGUI

Lots of design decisions
IMGUI requires new thinking

Generating UIs

Motivation

Reduce the work of creating UIs for everything

Example: Properties Panel

Our default object editor
Loop over the properties of a focused object
Draw an appropriate editor for each property

Bool: Checkbox
String: Textbox
...

This doesn't always work (color)

Custom Properties

We can customize how objects in The Truth
behave by adding Aspects
Basically a callback identified by an ID
Draw vec3 on a single line:

the_truth_api->set_aspect(
 tt, vec3_type, TT_ASPECT__CUSTOM_PROPERTIES,
 ui_vec3);

Objets without aspect get the default panel

Example

static float ui_vec3(properties_ui_args_t *args, rect_t item_rect, const char *name,
 const char *tooltip, uint64_t vec3)
{
 const rect_t label_r = rect_split_left(item_rect, label_width, margin, 0);
 const rect_t control_r = rect_split_left(item_rect, label_width, margin, 1);

 private__ui_tooltip_label(args->ui, args->uistyle,
 &(ui_tooltip_label_t){ .text = name, .rect = label_r, .tooltip = tooltip });

 for (uint32_t i = 0; i < 3; ++i) {
 const rect_t component_r = rect_divide_x(control_r, margin, 3, i);
 private__ui_float_box(args, component_r, vec3, i);
 }
 return item_rect.y + item_rect.h + margin;
}

Generated UI: Preview

Tab that allows preview of assets
Controlled by a PREVIEW aspect – spawns entities, draws UI

0:00 / 0:26

Generated UI: Tree View

By default, all subobjects are rendered as children
TREE_VIEW aspect for customizing

Full UI Example: Animation System

0:00 / 1:31

Conclusion / Post-Mortem I

Creating UIs feels faster
Not "blocked" by UI tasks

Full engine built by two people in two years
Data model: awesome, but scary

Each new piece adds more complexity
Aspects are a great way of customizing object behaviors

Conclusion / Post-Mortem II

Implementing things yourself is a lot of work
Making a toolkit requires a lot of "functional design"

How should things work?
We are missing features that you would expect in a full-fledged toolkit

Right-to-left text
(But note: In Stingray we never even had time to start on localization)

All-in-all we're happy with the direction

Questions?

@niklasfrykholm

