
A New Vehicle Pipeline for The Last of Us: Part II

Matthew Trevelyan Johns

Principal Environment Artist. Naughty Dog

Introductions - me

● First experienced game development modding GTA and COD
● University and all things Lego
● Intergalactic Spaceships
● Naughty Dog

Introductions – The Last of Us: Part II

● The sequel to the critically acclaimed ‘The last of Us’.
● Post apocalyptic setting
● Third person, action-adventure/survival horror
● Single player game with an engaging story
● Realistic graphics and animation
● Let’s watch a trailer

Introductions – My Role

● Primarily environment texture and shader artist
● The role is focused on detailed modeling, texturing, shader building and

lots of communication

Introductions – My Role

● Primarily environment texture and shader artist
● Creating tiling texture sets
● Building complex blend shaders
● A lot of uv mapping
● Vertex painting
● Creating unique assets and props
● Helping to manage your outsourcing requirements
● Working with lighting

Introductions – This talk

● It’s all about vehicles, but mostly texturing and shading these vehicles
● I speak from my humble artist’s point of view
● Concept art, current methods, new methods?
● This is just one of many approaches and not the ONLY approach to the

problems we faced

Concept art describes the challenges ahead

Fresh charring and
fire damage

‘Posed’ or articulated
doors and hood

Burned vehicle
with moss

Burned vehicles with
water damage

Small leaf piles

Openable trunk/doors

General weathering
example

Vehicles shown with heavy
snow coverings

- Vast numbers
- Different types
- Varying levels of distance

Outline of the major challenges

● Three major requirement categories

● TEXTURING – look, feel, reaction to the world
● MODELING – vehicle types, articulation, interiors
● RENDERING – vast numbers, varying distances,

levels of detail?

Concept round up

● A gradually evolving process
● Building upon a foundation other artists had

contributed to
● The trailer work was a great way to get practical

experience of the challenges we would face
● A long road ahead…

Previous vehicle pipelines at Naughty Dog

● Examples from Uncharted 4

Example of a hero vehicle in Uncharted 4
● The Madagascar off-road vehicle was created by

one of Naughty Dog’s awesome artists, Inkyo Lee
● Created using the traditional method: high – low

– unwrap – bake – texture – shaders
● The context of it’s use in game demanded high

levels of detail and interactivity

Texture usage and memory
● Larger, more detailed assets =

more textures
● 512 texel density rule + surfaces

needing unique UV space
● Each section requires its own

texture set
● Baking the off-road vehicle in

sections allows us to maintain
512px per 1m

● Let’s choose another vehicle from
Uncharted 4 that is used in a
similar context to those in The
Last of Us: Part II

Example of a background vehicle in Uncharted 4
● Background vehicles are a better use-case to

examine
● This SUV is representative of the pipeline used

Texel density
● Majority of vehicle mapped at just 256 px

per meter, using lots of mirroring.

Texel density cont…
● Mapped to 512 px per meter

the exterior alone would
require 3 additional texture
sets.

● Around 15 more textures
(ambient occlusion, normal,
color, roughness, metallic)

Texture sets
● 3 x unique texture sets
● 2 x shared texture sets
● 3 x unique masks

Larger vehicles
● As predicted, larger vehicles

require more texture sets
● Dirt and grime was also

included in the vans base
textures…

Resolution and details
● However, results are quite

low resolution due to the 256
pixels per meter mapping
resolution

Texture memory implications
● Why do a few more

textures even matter?
● We tend to work around a

fixed limit and try to
squeeze as much out of it
as possible

● We can consider 30MB our
‘baseline’

Texture memory implications
● The SUV model costs us

19,508 KB

Texture memory implications
● The van costs us an

additional 9,110 KB of
texture memory

● Heavy texture memory
cost for every new vehicle
added

Texture memory implications

● Texture memory getting eaten
up by all these vehicles

● Vehicles will use texture
memory, but it can’t be so
much that its detrimental to
environment artists

● Building upon foundations
established in previous
games and upon ideas from
other Naughty Dog Artists

● Let’s (finally) talk about the
new vehicle pipeline!

The new vehicle pipeline
● Full art process, from start to finish
● Advantages of this new pipeline?
● How does this save texture memory?

Modeling basics
● Drop baked normals for the body

completely
● This removes an entire stage of outsource

production that was time consuming
● It also immediately saved a lot of unique

textures per vehicle
● Baked normals for subtle body shape

details aren’t necessary
● Sometimes, only a slight increase in

polygons

Baked shape details vs modeled
● Low poly, no bevels, hard edges

Baked shape details vs modeled
● Bake adds impression of soft bevels

and some additional, low res details

Baked shape details vs modeled
● Higher polycount, bevels, no bakes

Baked shape details vs modeled
● Resulting model still looks nice and

smooth and the bevels light well

Face weighted normals
● Soft, pillowy normals can occur and

cause a bad reaction to lighting
● Using face-weighted normals fixes

this and our script made it quick and
easy

Details
● What about those smaller detailed

elements? We can’t model everything
with higher polycounts…

The bake kit
● A collection of modular, generic

details baked from a high poly model
and textured

● These details are not unique to one
car, but suitable for many cars

The bake kit
● The baked kit contains elements

suitable for multiple small vehicles
● One vehicle might only use a few

parts, but across the library of small
vehicles, all parts were useful

● Ambient Occlusion is not used in the
shader, to save texture memory

Decals
● Parallax occlusion mapped decals for

bolts, vents and other small details
● Height and normal maps do most of

the work and the shader inherits other
channels from the surfaces below it in
order to feel natural

Decals

● Strips were floating above the vehicle
surface and were hand placed and uv
mapped

● Vertex compression at build time was
reduced to prevent z-fighting artefacts

Decals

Decals
● These decals became were really

useful for environments as well
as vehicles

Body colour
● A small swatch texture drives the

body colour, roughness and metallic
values

● The body UVs are shrunk down and
placed on the swatch

● Multiple material types are
represented by the swatch

Colour swatch
● We don’t want duplicate cars of the

same colour side by side
● A shader feature tints the swatch

colours based on the vehicles World
space position coordinates

Colour variation
● Each vehicle can have up to 8 different

colours
● So far, so good, optimal and using a

method that will work for others
● What about the other details we need?

Multiple kits
● All elements are built from shared kits

and shared shaders
● Sharing is caring
● All baked from high poly models to

unique textures
● Building upon and refining ideas from

past projects and other artists
● How do we make up for missing

surface detail?

Refining the look
● Still aiming to hit the detailed

looks presented by the
concept art

● Advanced looks like wetness,
moss, snow, burning etc

● Uniquely baking and texturing
all of these details isn’t
possible

● Masks + multi layered shaders
+ system of shader instancing
and texture sharing

Masks
● The vehicle is given a secondary UV set
● UV shells from the first UV set are copied

here, uniformly scaled and packed efficiently
● Substance Painter used to paint the masks

Smart material mask
● Uniquely hand painting any textures is time

consuming and can be inconsistent
● Creating a template for the masks solves this
● And this consistency will be reflected in the

shaders
● Substance Painter smart material
● and alpha library created to be shared with

Outsource vendors

Smart material mask
● Semi truck wear-mask exhibits consistent

results

Smart material mask
● Drips and small details added with

alphas very quickly

Shaders
● A shader layer for each component

of ‘the look’ driven by the wear
mask and other blend features

Surfer
● Our in-house shader editor, showing the BRDF tab and

multiple, stacked layers

Texture blend
● ‘Texture Blend’ = a black and

white mask that blends one layer
over another

Threshold blend
● ‘Threshold Blend’ = a black and

white mask that adds detail at the
edge of the texture blend

Histogram select
● ‘Histogram select’ = select a specific a position in

the histogram created by the previous two blends

Layer stack
● Base layer

Layer stack
● Base layer

● Plastic wear

Layer stack
● Base layer

● Plastic wear

● Rust

Layer stack
● Base layer

● Plastic wear

● Rust

● Scratches and dents

Layer stack
● Base layer

● Plastic wear

● Rust

● Scratches and dents

● Peeling paint

Layer stack
● Base layer

● Plastic wear

● Rust

● Scratches and dents

● Peeling paint

● Rust bleed

Layer stack
● Base layer

● Plastic wear

● Rust

● Scratches and dents

● Peeling paint

● Rust bleed

● Overall dirt

Layer 6: Overall dirt

Modular textures
● Modular textures,

that the shader can
use for many inputs

● These three textures
do a lot of work

Modular textures

● BRDF textures stripped and
replaced with simple colors –
given variation via generic
threshold textures

● These textures have multiple
uses across all layers

Wear mask + threshold
Generic threshold map is also
used with the wear mask to add
detail to the blend

Advanced shader features

● Border blend feature adds
detail to the blend

● Leveraging shader features
creates detail without the
need for additional textures
and these effects are easier
to optimize

Border blend feature

Another example layer - rust

● Rust works in a similar way
● All layers use this modular texture

approach, sharing and re-using
where possible

Levels adjustments

● Levels adjustment within shader
allows me to fine tune the values
the generic threshold texture
presents to achieve many different
looks

Tiling layer details

● Having layered details that can
be tiled independently, means
larger vehicles no longer need
more textures to look high
resolution

Final example layer

● Rust bleed layer is a good
example of all three blend
methods

BRDF values

● Basic BRDF values (no textures)
for the rust bleed effect

Blend against previous layers

● No longer draws on rust, but still
needs more instructions

Wear mask

● The wear mask has the rust bleed
drawing in exactly the same
position as the basic rust by
default

Histogram select

● Using histogram select I can ‘push’
the rust bleed effect out so that it
surrounds the rust with a soft
effect

Threshold

● The wear mask has the rust bleed
drawing in exactly the same
position as the basic rust by
default

Final appearance

● With my final adjustments the
subtle rust bleed layer is
complete. It’s cheap and adds a
nice element of detail

Texture memory comparison
● Let’s see how the new

pipeline affects texture
memory

Single vehicle
● Around 33 MB for one

vehicle on the new pipeline
● Because we have more

details and more textures
overall our memory for
one vehicle has increased.

● Loading an additional
Uncharted 4 van cost 9MB

Two vehicles

● Loading an additional
TLOU: II van costs just

259 KB

Entire levels?
● Dramatic reduction

in texture memory
when adding
multiple vehicles to
a level

Alternative looks
● All vehicles had

multiple shader
looks

● Requests for new
vehicle types were
submitted to myself
and Tyler and we
created all variations
needed

The submerged look

Borrowed textures
● Making use of already loaded

textures to build new shader
looks

● This was the case for all of the
vehicle looks

Instanced materials

Optimizing the layers
● Added two texture samples (algae)

so two are removed (subtle
roughness)

● Reducing texture samples in the
shader to make it optimized at
render time

● Replacing textures, with flat values

One shader per element
● Each vehicle uses multiple shaders

and each shader, has multiple
looks

Implementing the blend
● Simple BRDF, much more

interesting blend
● Height value drives shader blend
● Old system required height value

input per shader

Instance based blends
● World space position and rotation

per instance now drives blend
● Allowed us to solve problems like

the river rapids sections efficiently

Cool tools
● World space position and

rotation values requiring
manual entry at first was
tricky

● Tool implemented by
Dongsub Woo, Steven Tang
and Ke Xu

Optimization
● Finally, optimization!
● Layered shaders introduce

more texture samples
● Previously mentioned

optimizations reduced cost
● Distance based blends

made shader much
cheaper over distance

● red = expensive, green =
cheap

Optimization

● For scenes like this, the
optimization really
helped

● Shaders automatically
becoming cheaper over
distance

Final thoughts

	A New Vehicle Pipeline for The Last of Us: Part II��Matthew Trevelyan Johns��Principal Environment Artist. Naughty Dog
	Introductions - me
	Introductions – The Last of Us: Part II
	Slide Number 4
	Introductions – My Role
	Slide Number 6
	Introductions – My Role
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Introductions – This talk
	Concept art describes the challenges ahead
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Outline of the major challenges
	Concept round up
	Previous vehicle pipelines at Naughty Dog
	Example of a hero vehicle in Uncharted 4
	Texture usage and memory
	Example of a background vehicle in Uncharted 4
	Texel density
	Texel density cont…
	Texture sets
	Larger vehicles
	Resolution and details
	Texture memory implications
	Texture memory implications
	Texture memory implications
	Texture memory implications
	The new vehicle pipeline
	Modeling basics
	Baked shape details vs modeled
	Baked shape details vs modeled
	Baked shape details vs modeled
	Baked shape details vs modeled
	Face weighted normals
	Details
	The bake kit
	The bake kit
	Decals
	Decals
	Decals
	Decals
	Body colour
	Colour swatch
	Colour variation
	Multiple kits
	Refining the look
	Masks
	Smart material mask
	Smart material mask
	Smart material mask
	Shaders
	Surfer
	Texture blend
	Threshold blend
	Histogram select
	Layer stack
	Layer stack
	Layer stack
	Layer stack
	Layer stack
	Layer stack
	Layer stack
	Modular textures
	Modular textures
	Wear mask + threshold
	Advanced shader features
	Another example layer - rust
	Levels adjustments
	Tiling layer details
	Final example layer
	BRDF values
	Blend against previous layers
	Wear mask
	Histogram select
	Threshold
	Final appearance
	Texture memory comparison
	Single vehicle
	Two vehicles
	Entire levels?
	Alternative looks
	The submerged look
	Borrowed textures
	Instanced materials
	Optimizing the layers
	One shader per element
	Implementing the blend
	Instance based blends
	Cool tools
	Optimization
	Optimization
	Final thoughts

