A Data Scientist plays games

Nick Berry
M.Eng, ARAeS, CIPP

Hi, my name is Nick, and I'm a Data Scientist ...

Let's start with a game ...

Roll 1 die

I'll give you \$1

Would you play this game?

Two basic methods:

Experimentation

Repeat the same experiment over and over again to compile results.

Formal Modeling

Mathematically model and calculate exact probabilities.

Real Game Examples

Snakes and Ladders

Win!

How long does a game last?

The shortest possible game takes just seven rolls.

There are multiple ways this can be achieved, it happens approximately twice in every thousand games played.

One possible solution is the rolls: 4, 6, 6, 2, 6, 6, 4

Monte-Carlo Simulation

Cumulative chance of winning

What kind of average are you looking for?

- MODAL number of moves $=20$
(Most common number of moves to complete the game)
- MEDIAN number of moves $=29$
(As many games take less time to complete as do more)
-(Arithmetic) MEAN number of moves $=36.2$ (Sum of all moves divided by number of games, for large N)

Андре́й Андре́евич Ма́рков (1856-1922)

Subjective Approach - Markov Chains

Model a system as a series of states.
Calculate the stochastic probabilities of transitioning from one state to any other.

Stochastic Process

Crucial to this simple analysis is the concept of a memoryless system.

It does not matter how we got to square G , but once there, we know the probabilities of moving to other squares.

All probabilities must add up to 1.0 (something must happen)

Transition Matrix

(Sparse) matrix containing probabilities of transitioning from state i to state j on next move
$10\left(\begin{array}{ccccccccccccc}8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & \\ 112 \\ 12 & 0 & 0 & 0 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 0 & 0 & 0 \\ \ldots & 0 & 0 & 0 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 0 & 0 & \\ \ldots & 0 & 0 & 0 & 0 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 0 & \end{array}\right)$

Watch out ! \#1

Some squares you can get to in more than one way!

$50\left(\begin{array}{cccccccccccccccccccccccc}48 & 49 & 50 & 51 & 52 & 53 & 54 & 55 & 56 & 57 & 58 & 59 & 60 & 61 & 62 & 63 & 64 & 65 & 66 & 67 & 68 & 69 & 70 & \\ & 0 & 0 & 0 & 0 & 1 / 6 & 2 / 6 & 1 / 6 & 1 / 6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 / 6 & 0 & 0 & 0 \\ \hline\end{array}\right.$

Watch out ! \#2

When you get to the end of the game, you don't need an exact roll to finish.

Transition Matrix in Action

Results - Roll \#1

Create a column vector with 1.0 in location $i=0$
(Player starts at state zero, off the board)
Multiply this by the Transition Matrix

Output row vector shows probability of where player could be after one roll

Wash, Rinse, Repeat
$\underset{\text { Starting }}{\text { States }}\left\langle\begin{array}{cccccc} \\ a_{1,1} & a_{1,2} & \ldots & \ldots & \ldots & a_{1, n} \\ a_{2,1} & a_{2,2} & \ldots & \ldots & \ldots & a_{2, n} \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ \ldots & \ldots & \ldots & a_{i, j} & \ldots & \ldots \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ a_{m, 1} & a_{m, 2} & \ldots & \ldots & \ldots & a_{m, n}\end{array}\right] \quad$ New

Roll \#2

Now use the probability output from roll \#1 as the input for roll \#2, and multiply by the Transition Matrix again.

Roll \#3, Roll \#4 ...

Roll \#20, Roll \#100

Roll \#20

Roll \#100

Animation

Markov Chain Analysis Results

Comparison of methods

Paramapada Sopanam - "The Ladder to Salvation."
$2^{\text {nd }}$ Century B.C.

It was invented by Hindu spiritual leaders to teach children about the rewards of good deeds and the negative consequences of bad ones.

- Snakes represent vices and poor choices.
- Ladders represent virtues and sound morality
- Square 100 is "Nirvana"

Uh-oh! Not a memoryless system

Cards are drawn from a deck and then discarded.

Probability of drawing the next card depends on cards already drawn (Like playing Blackjack).

Crippled Markov Chain

Approximate system by drawing a card, acting on it, then inserting back into deck, shuffling and then drawing again.

Transition Matrix is easy to create based on relative distributions of cards in the deck.

Bridges act like 'ladders'

Animation

Comparison to Monte-Carlo

Texas Hold'em Poker

Poker odds are complex

Expected outcome is based on superposition off odds of making each different kind of hand against all possible combinations of opponents hole cards against all combinations of community cards!

The odds change depending on the number of people at the table!

2 PLAYERS

					$\begin{gathered} \text { A9s } \\ \# 19 \end{gathered}$	A8s \#2	A7s	$\begin{array}{\|c} 63 \\ 63 \end{array}$	${ }_{334}^{5 s}$	$4 \mathrm{~s}$	$3 \mathrm{~s}$	A2s
					K9s	$\begin{gathered} \text { K83s } \\ \# 39 \end{gathered}$	$\underset{447}{\text { K7s }}$	${ }_{450}^{65}$	57	K4s	$\begin{aligned} & 3 \mathrm{~s} \\ & 67 \end{aligned}$	
	$K Q$	$\underset{* 3}{Q(}$	$\begin{aligned} & \text { QJs } \\ & \# 28 \end{aligned}$		Q	Q8s	Q7s			$\begin{aligned} & 24 \mathrm{~s} \\ & \# 79 \end{aligned}$	485	
$\# 1$	KJ	$\begin{aligned} & \text { QJ } \\ & \# 35 \end{aligned}$	$\underset{\# 4}{\mathrm{JJ}}$	\#38	$\begin{gathered} \mathrm{J} 9 \mathrm{~s} \\ \text { \#51 } \end{gathered}$	J8s \# 64	J7s	J6s \#86	$\mathrm{J} 5 \mathrm{~s}$	J4s \#97	s	s
$\begin{gathered} \text { AT } \\ \# 18 \end{gathered}$	$\begin{gathered} \text { KT } \\ \# 30 \end{gathered}$	$\underset{* 44}{\text { QT }}$	$\begin{aligned} & \text { JT } \\ & \text { \#52 } \end{aligned}$	$\begin{aligned} & \mathrm{TT} \\ & { }_{45} \end{aligned}$	$\begin{gathered} \text { T9S } \\ \hline 49 \end{gathered}$	T8s	$\begin{gathered} \text { 1/s } \\ \# 484 \end{gathered}$	$\begin{gathered} \text { T6s } \\ \text { \#94 } \end{gathered}$				$\begin{gathered} \text { T2s } \\ { }_{\# 1118} \end{gathered}$
\#2	K	$\begin{gathered} \text { Q9 } \\ \hline 55 \end{gathered}$	$$	$\begin{aligned} & \text { T9 } \\ & \# 73 \end{aligned}$	$\begin{gathered} 99 \\ \cdots \end{gathered}$		$\underset{\text { tax }}{97 s}$					
A8	$\begin{gathered} \text { K8 } \\ \text { \#54 } \end{gathered}$	Q	$\begin{aligned} & \text { J8 } \\ & \# 77 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { T8 } \\ \text { \#88 } \end{array}$	$\begin{aligned} & 98 \\ & \\ & \hline \end{aligned}$	$\begin{aligned} & 88 \\ & 77 \end{aligned}$	$\begin{gathered} 87 \mathrm{~s} \\ \hline 988 \end{gathered}$					
$\underset{\# 36}{\text { A7 }}$	$\begin{aligned} & \text { K7 } \\ & \text { \#58 } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { Q7 } \\ \# 78 \end{array}$	$\begin{aligned} & \text { J7 } \\ & \text { \#91 } \end{aligned}$	$\begin{array}{\|l\|l} \text { T7 } \\ \hline \end{array}$	$\begin{aligned} & 97 \\ & \# 108 \end{aligned}$	87	77					
$\# 4$	$\begin{array}{\|l\|} \hline \end{array}$	$\begin{array}{\|c\|} \text { Q6 } \\ \text { \#83 } \end{array}$	$\begin{aligned} & \mathrm{J} 6 \\ & \# 102 \end{aligned}$	T6 \#111	$\stackrel{96}{96}$	$\begin{aligned} & 86 \\ & \# 126 \end{aligned}$	$\begin{aligned} & 76 \\ & { }^{\#} 133 \end{aligned}$	$\begin{aligned} & 66 \\ & \# 15 \end{aligned}$				
	$\begin{aligned} & \infty \\ & m \end{aligned}$	$\begin{aligned} & \text { Q5 } \\ & \text { \#90 } \end{aligned}$	$\begin{aligned} & \text { J5 } \\ & \# 107 \end{aligned}$	Tt	$\begin{aligned} & 95 \\ & \# 130 \end{aligned}$	$\begin{aligned} & 85 \\ & \# 136 \end{aligned}$	75	? \#	$\begin{aligned} & 55 \\ & ; * 24 \\ & \hline \end{aligned}$			
$\#$	$\begin{aligned} & n_{2} \\ & m \end{aligned}$	$\begin{aligned} & \text { Q4 } \\ & \text { 世95 } \end{aligned}$	$\begin{aligned} & \text { J4 } \\ & \# 112 \end{aligned}$	T4 \#125	$\begin{aligned} & 94 \\ & \# 140 \end{aligned}$	$\begin{aligned} & 84 \\ & \# 148 \end{aligned}$	$\begin{aligned} & 74 \\ & \# 151 \end{aligned}$	$\begin{aligned} & 64 \\ & \# 155 \end{aligned}$	\#153	$\begin{aligned} & 44 \\ & 3 \\ & \hline \end{aligned}$		
$\begin{aligned} & A_{1} \\ & \text { H5 } \end{aligned}$	$\begin{gathered} K 3 \\ \# 82 \end{gathered}$	$\begin{aligned} & \text { Q3 } \\ & \# 101 \end{aligned}$	J3 \#117	$\begin{aligned} & \text { T3 } \\ & \# 131 \end{aligned}$	$\begin{aligned} & 93 \\ & \# 143 \end{aligned}$	$\begin{aligned} & 83 \\ & 157 \end{aligned}$	$\begin{aligned} & 73 \\ & \# 160 \end{aligned}$	$\begin{aligned} & 63 \\ & \# 162 \end{aligned}$	$\begin{aligned} & 53 \\ & \# 161 \end{aligned}$	$\begin{aligned} & 43 \\ & { }_{1164} \end{aligned}$	$\begin{aligned} & 33 \\ & 461 \end{aligned}$	
	K2	$\begin{aligned} & \text { Q2 } \\ & \# 105 \end{aligned}$	J2	$\begin{aligned} & \mathrm{T} 2 \\ & \mathbf{\# 1 3 5} \\ & \hline \end{aligned}$	$\begin{aligned} & 92 \\ & \# 149 \end{aligned}$	82	$\begin{array}{\|l\|l\|} \hline 72 \\ \hline 165 \end{array}$	$\begin{aligned} & 62 \\ & \# 167 \end{aligned}$	$\begin{aligned} & 52 \\ & \# 166 \end{aligned}$	$\begin{aligned} & 42 \\ & \# 168 \end{aligned}$	32 \#169	2

10 PLAYERS

	AKs				$\begin{gathered} \text { A9s } \\ \# 19 \end{gathered}$	A8s \#25	30	${ }^{436}$	\#29	${ }_{432}^{43}$	43	
	K				\#22	K8s \#38	\#45	${ }^{6} 53$	${ }^{3} 55$	$4 s$	3 s	
$\begin{aligned} & \text { AC } \\ & \# 1 \end{aligned}$	$\begin{aligned} & \text { KQ } \\ & \# 20 \end{aligned}$	$\underset{* 3}{\text { QC }}$	$\underset{\text { Qus }}{\substack{2}}$		$\underset{H 29}{\text { Q9s }}$	$\underset{4 .}{\text { Q8s }}$	$\begin{gathered} \text { Q7s } \\ \hline 463 \end{gathered}$	Q6s	69	Q4s	Q3s	
$\begin{aligned} & \text { AJ } \\ & \# \# 28 \end{aligned}$	$\begin{aligned} & \text { KJ } \\ & \# 31 \end{aligned}$	QJ	$\underset{\# 5}{\text { JJ }}$	\#16	\#24	$\underset{\text { \#41 }}{\mathrm{J} 8 \mathrm{~s}}$	$\mathrm{J} 7 \mathrm{~s}$	$\begin{aligned} & \mathrm{J6s} \\ & \hline 79 \end{aligned}$	J5s	$\underset{\# 86}{ }$	$\begin{gathered} 3 \mathrm{~s} \\ 787 \end{gathered}$	J2s
$\begin{gathered} \text { AT } \\ 443 \end{gathered}$	${ }_{3} \text { KT }$	$\underset{* 52}{\text { QT }}$	$\underset{* 50}{\text { JT }}$	$\underset{\text { wi }}{\text { TT }}$	*23	$\begin{gathered} \text { T8s } \\ \# 39 \end{gathered}$	T7	T6s	T5s \#93	4	$3 \mathrm{~s}$	$\begin{gathered} \mathbf{T} 2 \mathrm{~s} \\ \# 99 \end{gathered}$
$\begin{aligned} & \text { A9 } \end{aligned}$	$\begin{aligned} & \text { K9 } \\ & \text { \#81 } \end{aligned}$	$\begin{aligned} & \text { Q9 } \\ & \# 43 \end{aligned}$	$\begin{aligned} & \text { J9 } \\ & \text { \#80 } \end{aligned}$	$\begin{aligned} & \text { T9 } \\ & 773 \end{aligned}$	$\begin{aligned} & 99 \\ & \# 17 \end{aligned}$	98s	$\begin{gathered} 97 \mathrm{~s} \\ \hline \text { Ms } \end{gathered}$	96s	$\begin{gathered} 95 \mathrm{~s} \\ \\ \hline 89 \end{gathered}$	s		
$\begin{aligned} & \text { A8 } \\ & \text { \#91 } \end{aligned}$	K8 ${ }^{\# 112}$	$\underset{\# 116}{\text { Q8 }}$	$\begin{aligned} & \text { J8 } \\ & \# 111 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { T8 } \\ \hline \end{array}$	$\begin{aligned} & 98 \\ & \# 98 \end{aligned}$	$\begin{aligned} & 88 \\ & \# 21 \end{aligned}$	$\begin{gathered} 87 \mathrm{~s} \\ \text { \#51 } \end{gathered}$	$\begin{gathered} 86 \mathrm{~s} \\ \hline 44 \end{gathered}$	$\begin{gathered} \text { 85s } \\ \# 78 \end{gathered}$	$\begin{aligned} & 4 \mathrm{~s} \\ & 494 \end{aligned}$		
A7	$\begin{aligned} & \mathbf{K} \\ & \# 1 \end{aligned}$	$\mathbf{Q}_{\boldsymbol{\# 1 1}}$	$\begin{array}{\|l\|l\|} \hline \mathbf{\# 1 2 9} \end{array}$	$\begin{aligned} & \text { T7 } \\ & \# 124 \end{aligned}$	$\begin{aligned} & 97 \\ & \# 120 \end{aligned}$	87	77	$\underset{456}{76 s}$	$5 \mathrm{~s}$	ts		
$\begin{aligned} & \text { A6 } \\ & \# 114 \end{aligned}$	K6 \#125	$\underset{\# 138}{\mathbf{Q 6}}$	J6 \#147	T6	$\begin{aligned} & 96 \\ & \# 136 \end{aligned}$	86	$\begin{aligned} & 76 \\ & 3 \\ & \# 121 \end{aligned}$	$\begin{gathered} 66 \\ \\ \hline 344 \end{gathered}$	${ }_{462}^{65 s}$	$4 \mathrm{~s}$	$\begin{aligned} & 63 \mathrm{~s} \\ & \# 90 \\ & \hline \end{aligned}$	62s
$\begin{array}{\|l\|} \hline \text { A5 } \\ \# \# 101 \\ \hline \end{array}$	K5 \#128	$\begin{gathered} \text { Q5 } \\ \# 140 \end{gathered}$	$\begin{aligned} & \text { J5 } \\ & \# 149 \end{aligned}$	T5	$\begin{aligned} & 95 \\ & \# 150 \end{aligned}$	85	75	$\begin{aligned} & 65 \\ & { }_{\# 1} 123 \end{aligned}$	55	$$	$3 \mathrm{~s}$	
A4 \#105	K4 \#132	Q4 \#143	$\begin{array}{\|l\|l\|l\|l\|l\|} \hline \text { \#152 } \\ \hline \end{array}$	T4 \#159	94 \#164	84 $\# 156$	74 ${ }_{\# 145}$	64 \#134	\#127		3s \#82	2 s
A3 \#109	K_{3}	$\begin{aligned} & \text { Q3 } \\ & : 144 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { J3 } \\ \\ \hline 1154 \\ \hline \end{array}$	T3 \#161	$\begin{array}{\|l\|} \hline 93 \\ \\ \hline 165 \end{array}$	$\begin{aligned} & 83 \\ & \# 167 \end{aligned}$	73	63 $\begin{aligned} & 63 \\ & \# 148 \end{aligned}$	53 $\begin{aligned} & 5137 \\ & \# 137 \end{aligned}$	$\begin{gathered} 3 \\ 142 \end{gathered}$	33	
$\begin{aligned} & \text { A2 } \\ & \# 18 \end{aligned}$	K2 \#135	Q2 \#146	$\begin{array}{\|l\|} \mathbf{J} 2 \\ \hline 155 \end{array}$	T2	$\begin{array}{\|l\|} \hline 92 \\ \# 166 \end{array}$	82	$\begin{array}{\|l\|l\|} \hline 72 \\ \hline \end{array}$	62 \#163	52	$\begin{aligned} & 42 \\ & \# 153 \end{aligned}$	$\begin{aligned} & 32 \\ & 4158 \end{aligned}$	22

Basic Risk Mechanic

- Attacker rolls (up to) 3 dice
- Defender rolls (up to) 2 dice
- Highest dice attacks highest dice
- In a tie, defender wins

Sometimes Brute-Force is easier!

```
For Attack1 = 1 to 6
For Attack2 = 1 to 6
For Attack3 = 1 to 6
```

AttackHigh = Highest (Attack1, Attack2, Attack3)
AttackMedium = Medium (Attack1, Attack2, Attack3)
For Defence1 = 1 to 6
For Defence2 $=1$ to 6
DefenceHigh $=$ Highest (Defence1, Defence2)
DefenceLow = Lowest (Defence1, Defence2)
Calculate_Win_Loss_Tie (AttackHigh, AttackMedium, DefenceHigh, DefenceLow)

Next
Next

Next
Next
Next

There are only 7,776 combinations. It's easier, simpler, and less error-prone to just brute-force and enumerate all combinations

Basic Dice Results

Results

Attackers																				
Defenders	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	41.667\%	75.424\%	91.637	97.154\%	9006\%	99671\%	90.888\%	9006\%	99067\%	99966\%	99996\%	99990\%	100000\%	100.000\%	100000\%	100000\%	100000\%	100000\%	100000\%	100000\%
2	10610\%	36265\%	65.595\%	78545\%	88979\%	93368\%	96665\%	98031\%	99011\%	99.420\%	9e709\%	90850\%	99915\%	99950\%	90975\%	99965\%	90983\%	99966\%	99966\%	9990\%
3	02.702\%	20607\%	47.085\%	64.16\%\%	76937\%	8568\%	90984\%	94680\%	96699\%	98110\%	96830\%	99349\%	96603\%	99761\%	90867\%	999\%8\%	99966\%	99976\%	99966\%	99968\%
4	00666\%	09.130\%	31.499\%	47653\%	63.68\%	74.487\%	63374\%	28.780\%	9296\%\%	95333\%	97204\%	96.199\%	9695\%	99321\%	99605\%	99.751\%	99857\%	99911\%	99950\%	99960\%
5	00.175\%	04913\%	20504\%	3561\%	50600\%	63:77\%	73640\%	81.841\%	67294\%	91.620\%	94304\%	96370\%	97581\%	98.496\%	90015\%	994011\%	99612\%	99760\%	99851\%	99912\%
6	00045%	02.135%	13370\%	25250\%	30675\%	52068\%	64.007\%	72956\%	60.764\%	66.109\%	905k\%	93354\%	95611\%	96901\%	98065\%	98697\%	99.100\%	99455\%	99665\%	99779\%
7	00011\%	01.133\%	08374\%	16.149\%	29742\%	42333\%	53.53\%	64294\%	72600\%	79963\%	65.205\%	60612\%	92541\%	9498\%	96.441\%	97644\%	98377\%	98949\%	99287\%	90547\%
8	00003%	00.490\%	05350\%	12340\%	22405\%	32948\%	44.550\%	54.736\%	646417	72307\%	79412\%	84,486\%	28857\%	91830\%	94316\%	959337	97242\%	98063\%	98.715\%	90112\%
9	00.001\%	00259\%	03277%	08617\%	16.156\%	25777\%	35603\%	46399\%	55.607\%	65.006\%	72303\%	78980\%	83916\%	88227\%	91231\%	93772\%	95466\%	96061\%	97.756\%	98.432\%
10	00000\%	00.112\%	02075\%	05.719\%	11.328\%	19343\%	28676\%	37987\%	47994\%	56759\%	65383\%	72284\%	78676\%	83.457\%	87.606\%	90.704\%	93284\%	95038\%	96504\%	97.465\%
11	00.000\%	00058\%	01255\%	03917\%	0829\%	14608\%	22.187\%	31.173\%	39987\%	49395\%	5762\%	65.76\%	72319\%	78.447	83088\%	87248\%	90246\%	92348\%	94647\%	96.160\%
12	00000\%	00025\%	00791\%	02555\%	0594\%\%	10721\%	17331\%	24.704\%	33375\%	41.749\%	50650\%	58.430\%	66.140\%	72395\%	78284\%	82.790\%	66.860\%	39845\%	92457\%	94290\%
13	00000\%	00013\%	00475\%	01.725\%	04079\%	07963\%	1303\%	19735\%	26971\%	3538\%	43308\%	51.787\%	52.174\%	66515\%	72501\%	78.172\%	82.551\%	26.547\%	89496\%	92.107\%
14	00000\%	00006\%	00299\%	01.111\%	02375\%	05679\%	09956\%	15221\%	21943\%	29026\%	37.110\%	44756\%	52827\%	59809\%	66834\%	72629\%	78.102\%	22359\%	86.273\%	29.189\%
15	00000\%	00003\%	00.179\%	00742\%	01941\%	04.142\%	07321\%	11.809\%	17277\%	23980\%	30904\%	38.723\%	4606\%	53.788\%	60524\%	67248\%	72.775\%	78065\%	22208\%	86040\%
16	00000\%	00001\%	00112\%	00.473%	01351\%	02901\%	05.436\%	08964\%	13753\%	19211\%	25368\%	32631\%	40204\%	47,264\%	54681\%	61.144\%	67.605\%	72934\%	78055\%	82009\%
17	00.000\%	00001\%	00067\%	00314\%	00900\%	02085\%	03958\%	06.371\%	10.589\%	15.540\%	21.034\%	27.624\%	34200\%	41.572\%	48379\%	55.516\%	61.732%	67956\%	73103\%	78068\%
18	00000\%	00000\%	00042\%	00.198%	00600\%	01.438\%	02900\%	05081\%	08273\%	12.182\%	17252\%	22755%	29265	3517\%	42844\%	49.419\%	56.302%	62293\%	68300\%	73200\%
19	00000\%	00000\%	00085\%	00.131\%	00.408\%	01021\%	02073\%	03833\%	06248\%	09675\%	13736\%	18800\%	24381\%	30804\%	37.106\%	44031\%	50393%	57.043\%	62889\%	68637\%
20	00000\%	00000\%	00016\%	0008\%\%	00279\%	0066\%	01.510\%	62.78\%	04803\%	07.441\%	11.066\%	15246\%	20457\%	2592\%	3251\%	38410\%	45.145\%	51310\%	57.746\%	63343\%

A picture paints a thousand numbers

Attackers

Results

STRATEGY TIP - It's better to attack then defend. Be aggressive.

STRATEGY TIP - Always attack with superior numbers to maximize the chances of your attack being successful.

STRATEGY TIP - If attacking a region with the same number of armies as the defender, make sure that you have at least five armies if you want the odds in your favour (the more the better).

95\% confidence level

What is the probability of rolling a Yahtzee?

In one roll, it's $1 / 6 \times 1 / 6 \times 1 / 6 \times 1 / 6=1 / 1296$
But what about over three rolls?

Markov Chain - Transition Matrix

Watch out! Here you may elect to change your target!

Answer $=4.6029 \%$

Yahztee - "Just one more roll?"

Number of rolls

Breakdown of odds

Where is the best place to aim on a dartboard?

(To maximize expected score)

吃 depends on
 how good you are。

"Good] Players

"Bad? Players

Low accuracy
High standard deviation

Animation

More examples:

http://DataGenetics.com/blog

THE END

