GDC

A Data Scientist plays games

M.Eng, ARAeS, CIPP

GAME DEVELOPERS CONFERENCE | July 19-23, 2021

Hi, my name is Nick, and I'm a Data Scientist ...

Let's start with a game ...

Would you play this game?

You give me \$1

Two basic methods:

Experimentation

Formal Modeling

Repeat the same experiment over and over again to compile results.

Mathematically model and calculate exact probabilities.

2/6

Real Game Examples

 \bigcirc

Snakes and Ladders

Win!

How long does a game last?

The shortest possible game takes just seven rolls.

There are multiple ways this can be achieved, it happens approximately twice in every thousand games played.

One possible solution is the rolls: 4, 6, 6, 2, 6, 6, 4

Directed Graph

Monte-Carlo Simulation

One billion games!

Cumulative chance of winning

What kind of average are you looking for?

 MODAL number of moves = 20 (Most common number of moves to complete the game)

 MEDIAN number of moves = 29 (As many games take <u>less</u> time to complete as do <u>more</u>)

• (Arithmetic) MEAN number of moves = 36.2 (Sum of all moves divided by number of games, for large N)

Андрей Андреевич Марков (1856 - 1922)

Subjective Approach – Markov Chains

Model a system as a series of states.

Calculate the stochastic probabilities of transitioning from one state to any other.

Stochastic Process

Crucial to this simple analysis is the concept of a *memoryless* system.

It does not matter how we got to square G, but once there, we know the probabilities of moving to other squares.

All probabilities *must* add up to 1.0 (something must happen)

Square matrix containing probabilities of next step.

2 5 4 6 3 7 1 2 a _{i,j} 3 4 5 Т Ε r. 6 7

transitioning from state *i* to state *j* on

Transition Matrix

(Sparse) matrix containing probabilities of transitioning from state *i* to state *j* on next move

	8	9	10	11	12	13	14	15	16	17	18	19	
10	 0	0	0	1/6	1/6	1/6	1/6	1/6	1/6	0	0	0	
11	 0	0	0	0	1/6	1/6	1/6	1/6	1/6	1/6	0	0	
12	 0	0	0	0	0	1/6	1/6	1/6	1/6	1/6	1/6	0	

0	0
0	0
0	0
	0

Snakes and Ladders Transition Matrix

Watch out ! #1

Some squares you can get to in more than one way!

Watch out *! #2*

When you get to the end of the game, you don't need an exact roll to finish.

		77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	1
	(-																					
96		0	1/6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
97		0	1/6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
98		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		•••						***		•••	***		•••	•••						•••		

Transition Matrix in Action

Ending States

Results – Roll #1

Create a column vector with 1.0 in location *i*=0

(Player starts at state zero, off the board)

Multiply this by the Transition Matrix

Output row vector shows probability of where player could be after one roll

Wash, Rinse, Repeat

Roll #2

Now use the probability output from roll #1 as the input for roll #2, and multiply by the Transition Matrix again.

Roll #1

Roll #2

(approx. twice per 1000 games)

Roll #20, Roll #100

Roll #20

Roll #100

Animation

Markov Chain Analysis Results

Comparison of methods

Paramapada Sopanam — "The Ladder to Salvation."

2nd Century *B.C.*

It was invented by Hindu spiritual leaders to teach children about the rewards of good deeds and the negative consequences of bad ones.

- Snakes represent vices and poor choices.
- Ladders represent virtues and sound morality
- Square 100 is "Nirvana"

Uh-oh! Not a *memoryless* system

Cards are drawn from a deck and then discarded.

Probability of drawing the next card depends on cards already drawn (Like playing Blackjack).

Crippled Markov Chain

Approximate system by drawing a card, acting on it, then inserting back into deck, shuffling and then drawing again.

> Transition Matrix is easy to create based on relative distributions of cards in the deck.

	_	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
	[·	 ••••														
7		 0	0	0	6/64	1/64	6/64	6/64	6/64	6/64	6/64	4/64	4/64	4/64	3/64	3/64
	L	 														

Bridges act like 'ladders'

Animation

Comparison to Monte-Carlo

Texas Hold'em Poker

TANGS

Poker odds are complex

Expected outcome is based on superposition off odds of making each different kind of hand against all possible combinations of opponents hole cards against all combinations of community cards!

The odds change depending on the number of people at the table!

2 PLAYERS

AA	AKs	AQs	AJs	ATs	A9s	A8s	A7s	A6s	A5s	A4s	A3s	A2s
#1	#8	#10	#12	#14	#19	#22	#27	#33	#34	#37	#41	#48
AK	KK	#17	KJS	KIS	K95	K85	K/S	K6S	K5S	K4S	K3S	K2S
#11	#2		#20	#21	#29	#39	#47	#50	#57	#62	#67	#71
AQ	KQ	QQ	QJs	QTs	Q9s	Q8s	Q7s	Q6s	Q5s	Q4s	Q3s	Q2s
#13	#23	#3	#28	#31	#43	#53	#63	#69	#74	#79	#85	#89
AJ	KJ	QJ	JJ	JTs	J9s	J8s	J7s	J6s	J5s	J4s	J3s	J2s
#16	#26	#35	#4	#38	#51	#64	#75	#86	#92	#97	#100	#104
AT	KT	QT	JT	TT	T9s	T8s	T7s	T6s	T5s	T4s	T3s	T2s
#18	#30	#44	#52	#5	#59	#72	#84	#94	#106	#109	#113	#118
A9 #25	K9 #40	Q9 #55	J9 #66	T9 #73	99 #6	98s #81	97s	96s #103	95s #114	94s #123	93s #127	92s
A8 #32	K8 #54	Q8 #68	J8 #77	T8 #88	98 #96	88 #7	87s	86s #110	85s #119	84s #129	83s #139	82s
A7	K7	Q7	J7	T7	97	87	77	76s	75s	74s	73s	72s
#36	#58	#78	#91	#99	#108	#116	#9	#115	#124	#134	#144	#152
A6	K6	Q6	J6	T6	96	86	76	66	65s	64s	63s	62s
#45	#65	#83	#102	#111	#120	#126	#133	#15	#128	#138	#147	#156
A5	K5	Q5	J5	T5	95	85	75	65	55	54s	53s	52s
#46	#70	#90	#107	#122	#130	#136	#142	#145	#24	#137	#146	#154
A4	K4	Q4	J4	T4	94	84	74	64	54	44	43s	42s
#49	#76	#95	#112	#125	#140	#148	#151	#155	#153	#42	#150	#159
A3	K3	Q3	J3	T3	93	83	73	63	53	43	33	32s
#56	#82	#101	#117	#131	#143	#157	#160	#162	#161	#164	#61	#163
A2	K2	Q2	J2	T2	92	82	72	62	52	42	32	22
#60	#87	#105	#121	#135	#149	#158	#165	#167	#166	#168	#169	#80

10 PLAYERS

AA	AKs	AQs	AJs	ATs	A9s	A8s	A7s	A6s	A5s	A4s	A3s	A2s
#1	#4	#6	#8	#13	#19	#25	#30	#36	#29	#32	#33	#37
AK	KK	KQs	KJs	KTs	K9s	K8s	K7s	K6s	K5s	K4s	K3s	K2s
#11	#2	#7	#10	#14	#22	#38	#45	#53	#55	#58	#59	#60
AQ	KQ	QQ	QJs	QTs	Q9s	Q8s	Q7s	Q6s	Q5s	Q4s	Q3s	Q2s
#18	#20	#3	#12	#15	#26	#42	#63	#66	#69	#70	#72	#74
AJ	KJ	QJ	JJ	JTs	J9s	J8s	J7s	J6s	J5s	J4s	J3s	J2s
#28	#31	#35	#5	#16	#24	#41	#61	#79	#84	#86	#87	#88
AT	KT	QT	JT	TT	T9s	T8s	T7s	T6s	T5s	T4s	T3s	T2s
#43	#47	#52	#50	#9	#23	#39	#57	#75	#93	#96	#97	#99
A9	K9	Q9	J9	T9	99	98s	97s	96s	95s	94s	93s	92s
#77	#81	#83	#80	#73	#17	#40	#54	#68	#89	#106	#107	#110
A8	K8	Q8	J8	T8	98	88	87s	86s	85s	84s	83s	82s
#91	#112	#116	#111	#100	#98	#21	#51	#64	#78	#94	#115	#117
A7	K7	Q7	J7	T7	97	87	77	76s	75s	74s	73s	72s
#104	#122	#131	#129	#124	#120	#113	#27	#56	#67	#85	#102	#119
A6	K6	Q6	J6	T6	96	86	76	66	65s	64s	63s	62s
#114	#125	#138	#147	#141	#136	#126	#121	#34	#62	#71	#90	#108
A5	K5	Q5	J5	T5	95	85	75	65	55	54s	53s	52s
#101	#128	#140	#149	#157	#150	#139	#130	#123	#44	#65	#76	#92
A4	K4	Q4	J4	T4	94	84	74	64	54	44	43s	42s
#105	#132	#143	#152	#159	#164	#156	#145	#134	#127	#46	#82	#95
A3	K3	Q3	J3	T3	93	83	73	63	53	43	33	32s
#109	#133	#144	#154	#161	#165	#167	#160	#148	#137	#142	#48	#103
A2	K2	Q2	J2	T2	92	82	72	62	52	42	32	22
#118	#135	#146	#155	#162	#166	#168	#169	#163	#151	#153	#158	#49

© GreatPokerHands.com

Basic Risk Mechanic

•Attacker rolls (up to) 3 dice

- Defender rolls (up to) 2 dice
- Highest dice attacks highest dice
- In a tie, defender wins

Sometimes Brute-Force is easier!

```
For Attack1 = 1 to 6
For Attack2 = 1 to 6
For Attack3 = 1 to 6
```

```
AttackHigh = Highest (Attack1, Attack2, Attack3)
AttackMedium = Medium (Attack1, Attack2, Attack3)
```

```
For Defence1 = 1 to 6
For Defence2 = 1 to 6
```

. .

DefenceHigh = Highest (Defence1, Defence2) DefenceLow = Lowest (Defence1, Defence2) Calculate_Win_Loss_Tie (AttackHigh, AttackMedium, DefenceHigh, DefenceLow)

inext	
Next	There are only 7,776 combination
Novt	simpler, and less error-prone to just b
Next	enumerate all
NEXL	
Next	

ons. It's easier, rute-force and l combinations

Basic Dice Results

Attacker Rolls	Defende	er Rolls 2 Dice	Defend	ler Rolls
	3 Attackin	g vs. 2 Defending	3 Attackin	g vs. 1 D
	Attack Wins 2	(2890/7776) 37.17%	Attack Wins	(855/12
1. 2. C. 2. D.	Defence Wins 2	(2275/7776) 29.26%	Defence Wins	(441/12
	Attack 1 Defence 1	(2611/7776) 33.58%		

2 Attacking	vs. 2 Defei	nding	
Attack Wins 2	(295/1296)	22.76%	
Defence Wins 2	(581/1296)	44.83%	
Attack 1 Defence 1	(420/1296)	32.41%	

2 Attacking	/s.	1	D
Attack Wins	(12	25	/2
Defence Wins	(9	1/	21

	1 Attackin	g vs. 2 Defending	1 Attacki	1 Attacking vs. 1 Def				
,	Attack Wins	(55/216) 25.46%	Attack Wins	(15/36				
	Defence Wins	(161/216) 74.54%	Defence Wins	(21/36				

1.	

2 Attacking	vs. 2 Defei	nding	
Attack Wins 2	(295/1296)	22.76%	
Defence Wins 2	(581/1296)	44.83%	
Attack 1 Defence 1	(420/1296)	32.41%	

2 Attacking	vs. 1 Defending	
Attack Wins	(125/216) 57.87%	
Defence Wins	(91/216) 42.13%	

1 Attacking	vs. 2 Defe	nding	
Attack Wins	(55/216)	25.46%	
Defence Wins	(161/216)	74.54%	

1 Attacking vs	. 1 Defe	ending	
Attack Wins	(15/36)	41.67%	
Defence Wins	(21/36)	58.33%	

Results

										Atta	ickers									
Defenders	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	41.667%	75.424%	91.637%	97.154%	99.032%	99.671%	99.888%	99.962%	99.987%	99.996%	99.998%	99.999%	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%
2	10.610%	36.265%	65.595%	78.545%	88.979%	93.398%	96.665%	98.031%	99.011%	99.420%	99.709%	99.830%	99.915%	99.950%	99.975%	99.985%	99.993%	99.996%	99.998%	99.999%
3	02.702%	20.607%	47.025%	64.162%	76.937%	85.692%	90.994%	94.680%	96.699%	98.110%	98.839%	99.349%	99.603%	99.781%	99.867%	99.928%	99.956%	99.976%	99.985%	99.992%
4	00.688%	09.130%	31.499%	47.653%	63.829%	74.487%	83.374%	88.780%	92.982%	95.393%	97.204%	98.199%	98.932%	99.321%	99.605%	99.751%	99.857%	99.911%	99.950%	99.969%
5	00.175%	04.913%	20.594%	35.861%	50.620%	63.772%	73.640%	81.841%	87.294%	91.628%	94.304%	96.370%	97.581%	98.498%	99.015%	99.401%	99.612%	99.768%	99.851%	99.912%
6	00.045%	02.135%	13.370%	25.250%	39.675%	52.068%	64.007%	72.956%	80.764%	86.109%	90.522%	93.354%	95.611%	96.991%	98.065%	98.697%	99.180%	99.455%	99.663%	99.779%
7	00.011%	01.133%	08.374%	18.149%	29.742%	42.333%	53.553%	64.294%	72.608%	79.983%	85.205%	89.612%	92.541%	94.929%	96.441%	97.644%	98.377%	98.949%	99.287%	99.547%
8	00.003%	00.490%	05.350%	12.340%	22,405%	32.948%	44.558%	54.736%	64.641%	72.397%	79.412%	84.486%	88.857%	91.838%	94.318%	95.933%	97.242%	98.063%	98.715%	99.112%
9	00.001%	00.259%	03.277%	08.617%	16.156%	25.777%	35.693%	46.399%	55.807%	65.006%	72.303%	78.988%	83.916%	88.227%	91.231%	93.772%	95.466%	96.861%	97.758%	98.482%
10	00.000%	00.112%	02.075%	05.719%	11.828%	19.343%	28.676%	37.987%	47.994%	56.759%	65.383%	72.284%	78.676%	83.457%	87.696%	90.704%	93.284%	95.038%	96.504%	97.465%
11	00.000%	00.059%	01.255%	03.917%	08.292%	14.698%	22.187%	31.173%	39.987%	49.395%	57.629%	65.762%	72.319%	78.447%	83.088%	87.248%	90.246%	92.848%	94.647%	96.169%
12	00.000%	00.025%	00.791%	02.555%	05.942%	10.721%	17.331%	24.704%	33.375%	41.749%	50.650%	58.430%	66.140%	72.395%	78.284%	82.790%	86.869%	89.845%	92.457%	94.290%
13	00.000%	00.013%	00.475%	01.725%	04.079%	07.963%	13.039%	19.735%	26.971%	35.338%	43.328%	51.787%	59.174%	66.515%	72.501%	78.172%	82.551%	86.547%	89.496%	92.107%
14	00.000%	00.006%	00.299%	01.111%	02.875%	05.679%	09.956%	15.221%	21.943%	29.026%	37.110%	44.756%	52.827%	59.869%	66.884%	72.629%	78.102%	82.359%	86.273%	89.189%
15	00.000%	00.003%	00.179%	00.742%	01.941%	04.142%	07.321%	11.889%	17.277%	23.980%	30.904%	38.723%	46.062%	53.788%	60.524%	67.248%	72.775%	78.065%	82.208%	86.040%
16	00.000%	00.001%	00.112%	00.473%	01.351%	02.901%	05.486%	08.964%	13.753%	19.211%	25.868%	32.631%	40.204%	47.264%	54.681%	61.144%	67.605%	72.934%	78.055%	82.089%
17	00.000%	00.001%	00.067%	00.314%	00.900%	02.085%	03.958%	06.871%	10.589%	15.540%	21.034%	27.624%	34.230%	41.572%	48.379%	55.516%	61.732%	67.956%	73.103%	78.068%
18	00.000%	00.000%	00.042%	00.198%	00.620%	01.438%	02.920%	05.081%	08.273%	12.182%	17.252%	22.755%	29.265%	35.717%	42.844%	49.419%	56.302%	62.293%	68.300%	73.280%
19	00.000%	00.000%	00.025%	00.131%	00.408%	01.021%	02.073%	03.833%	06.248%	09.675%	13.736%	18.890%	24.381%	30.804%	37.106%	44.031%	50.393%	57.043%	62.829%	68.637%
20	00.000%	00.000%	00.016%	00.082%	00.279%	00.696%	01.510%	02.788%	04.803%	07.441%	11.056%	15.246%	20.457%	25.922%	32.251%	38,410%	45.145%	51.310%	57.746%	63.343%

A picture paints a thousand numbers

Attackers

Attacker advantage

Defender advantage

Results

STRATEGY TIP – It's better to attack then defend. Be aggressive.

STRATEGY TIP – Always attack with superior numbers to maximize the chances of your attack being successful.

STRATEGY TIP – If attacking a region with the same number of armies as the defender, make sure that you have *at least* five armies if you want the odds in your favour (the more the better).

95% confidence level

What is the probability of rolling a Yahtzee?

In one roll, it's $1/6 \times 1/6 \times 1/6 \times 1/6 = 1/1296$ But what about over three rolls?

	1	2	3	4	5
1	120 1296	<u>900</u> 1296	<u>250</u> 1296	<u>25</u> 1296	1 1296
2		<u>120</u> 216	<u>80</u> 216	<u>15</u> 216	1 216
3			25 - 36	10 36	1 36
4				5/6	1∕6
5					1
)

Markov Chain – Transition Matrix

Watch out! Here you may elect to change your target!

Answer = 4.6029%

Yahztee - "Just one more roll?"

Number of rolls

Breakdown of odds

Where is the best place to aim on a dartboard?

(To maximize expected score)

It depends on how good you arel

High accuracy Low standard deviation

Low accuracy High standard deviation

Animation

More examples:

http://DataGenetics.com/blog

THE END

NTILES, AND CORES

