GDC

Data driven competitive matchmaking across multiple continents

GAME DEVELOPERS CONFERENCE | July 19-23, 2021

Talk structure

- Intro to Warcraft III, W3Champions, first project
- Matchmaking details for 2on2
- 1on1 ladder over multiple continents

GOC GAME DEVELOPERS CONFERENCE | July 19-23, 2021 | #GDC21

Warcraft III

- •Real time strategy game, release in July 2002 popular modes: 1on1/ 2on2 / 4on4 / FFA
- Warcraft III: Reforged released in January 2020
- •Revival of the competitive (1on1) scene

W3Champions: community ladder

Why? No competitive matchmaking on release :(

When? Started March 2020, thanks @W3Pad :)

How? Chromium Embedded Framework

GOC[®] GAME DEVELOPERS CONFERENCE | July 19-23, 2021 | #GDC21

©2021 BLIZZARD ENTERTAINMENT, INC. ALL RIGHTS RESERVED.

W3CHAMPIONS

W3CHAMPIONS

Message of the Day

Legion TD 4v4 x3, x20 and ROC 1v1 ladders have been released. You can find them in Non-Melee section of versus screen.

[1. W3 GENERAL]:

GDC[®] GAME DEVELOPERS CONFERENCE | July 19-23, 2021 | #GDC21

120

Sunday, June 6, 2021 14:18 W3CHAMPIONS MAP PREFERENCES AMAZONIA MAX PLAYERS: 2 AUTUMN LEAVES MAX PLAYERS: 2 CONCEALED HILL 11 MAX PLAYERS: 2 ÷ û **0** £. ECHO ISLES MAX PLAYERS: 2 LAST REFUGE MAX PLAYERS: 2 NORTHERN ISLES IT'E MAX PLAYERS: 2 SELECT 1 MAPS TO EXCLUDE FROM YOUR MAP POOL. RUINS OF AZSHARA MAX PLAYERS: 2 Nº SHALLOW GRAVE V1.3 MAX PLAYERS: 2 BACK **CUSTOM** CHAT GDC[®] GAME DEVELOPERS CONFERENCE | July 19-23, 2021 | #GDC21

What to do with the data?

- Rating system
- Ranking formula
- Matchmaking algorithm

GOC[®] GAME DEVELOPERS CONFERENCE | July 19-23, 2021 | #GDC21

What got me started...

- Very early adopter as a (good) player
- Unhappy with the ranking systems: first: pure "XP" ranking, play most get first then: pure skill, simply ordered by rating
- Gave feedback as a player...

Improving the ranking formula

Idea: balance skill (rating) and grind (activity)

- Fair ladder: should converge to a pure skill ranking
- Honest ladder: incentivize activity to improve confidence in ratings

The Ranking Formula

• β (e.g. 0.8): determines how much we weight "skill" vs "activity"

- α (e.g. 0.12): determines how "active" players need to be
- Lower bound on rating: $\mu 2(\sigma \sigma_{\min})$

confidence term

Matchmaking

GDC[®] GAME DEVELOPERS CONFERENCE | July 19-23, 2021 | #GDC21

What's challenging about 20n2 Random Team matchmaking?

- Closely matched players does not imply fair game Example: matched players with ratings: [1904, 1903, 1902, 1701]
- How should we model team strength?

Example: [2000, 1200] equivalent to [1600, 1600]?

• Ratings are long tailed for very good players (lonely at the top)

Idea: Balance fairness, uniformity and wait time.

What is **fairness**? How fair a game is, given a model for win probability:

$$F(\text{Game}) = |\mathbb{P}(\text{win}) - 0.5|$$

What is **uniformity**? How closely matched players are, w.r.t. a notion of quality:

$$U(\text{Game}) = \max_{p \in G}(Q_p) - \min_{p \in G}$$

GOC GAME DEVELOPERS CONFERENCE | July 19-23, 2021 | #GDC21

Fairness in team games: how strong is a team given its two players' ratings R_1 , R_2 ?

Generalized p-mean:

$$R_T(p) = [0.5 \cdot (R_1^p + R_2^p)]^{1/p}$$

How to find a good "p"? Maximum Likelihood estimation on actual game history!

 \rightarrow best fit for p = -0.02, we use the geometric mean for 20n2!

Win probability becomes:

$$\mathbb{P}(ext{win for } T_1) = g(\sqrt{R_1R_4} - \sqrt{R_1R_4})$$

where $g(\cdot)$ is the (properly scaled) logistic function (see e.g. Elo or Glicko2).

Uniformity in team games: how far apart are players, really?

GOC[®] GAME DEVELOPERS CONFERENCE | July 19-23, 2021 | #GDC21

Uniformity in team games: what about the percentile of skill?

 $Q_p = \text{ECDF}(\text{Rating}_p)$

ECDF (empirical cumulative distribution function): proportion of players with a rating smaller than player p's

$$U(ext{Game}) = \max_{p \in G}(Q_p) - \min_{p \in G}(Q_p)$$

Distribution of Q_p for players in queue

Uniformity in team games: activity weighted percentile of skill!

 $Q_p = WECDF(Rating_p)$

WECDF (weighted empirical cumulative distribution function): proportion of players with a rating smaller than player p's, weighted by how much they play

$$U(ext{Game}) = \max_{p \in G}(Q_p) - \min_{p \in G}(Q_p)$$

Distribution of Q_p for players in queue 0.6 0.8 1.0

Loop over all possible games and create a game if and only if:

Uniformity(G) + $c \cdot \text{Fairness}(G)$) < $\tau - m \cdot \text{AVG}(\text{Wait time})$

Find parameters T, c and m by running experiments on historical data

c li	m .	tau \Xi	avg fairness 🛛 😇	avg q uniformity \Xi	avg wait \Xi	median fairness 🛛 😇	median q uniformity $=$	median wait \Xi	q25 fairnes -	q75 q unif \Xi	q75 wait \Xi
CURRENT	CURRENT	CURRENT	0.089	0.397	3.253	0.074	0.375	2.897	0.853	0.559	3.924
2.000	0.120	0.120	0.062	0.239	2.661	0.044	0.202	2.108	0.853	0.309	3.446
2.000	0.120	0.250	0.067	0.270	2.292	0.049	0.239	1.746	0.853	0.350	3.005
2.000	0.120	0.300	0.069	0.280	2.153	0.052	0.250	1.615	0.853	0.365	2.833
1.500	0.120	0.200	0.069	0.262	2.340	0.049	0.229	1.827	0.853	0.340	3.075
1.500	0.120	0.250	0.072	0.273	2.194	0.053	0.244	1.701	0.853	0.357	2.892
1.500	0.120	0.300	0.072	0.285	2.089	0.054	0.259	1.587	0.853	0.370	2.749
3.000	0.100	0.120	0.055	0.222	2.983	0.037	0.189	2.361	0.853	0.286	3.812
2.500	0.100	0.050	0.054	0.208	3.201	0.037	0.172	2.582	0.853	0.269	4.037
3.000	0.100	0.050	0.052	0.206	3.224	0.036	0.171	2.597	0.853	0.268	4.065
2.500	0.100	0.100	0.055	0.219	2.994	0.039	0.186	2.398	0.853	0.284	3.856
2.500	0.100	0.080	0.055	0.214	3.078	0.037	0.179	2.476	0.853	0.278	3.887
3.000	0.100	0.080	0.054	0.211	3.137	0.037	0.177	2.503	0.853	0.272	3.922
3.000	0.100	0.150	0.056	0.227	2.902	0.038	0.197	2.246	0.853	0.292	3.732
3.000	0.100	0.100	0.054	0.217	3.064	0.038	0.184	2.446	0.853	0.282	3.861
2.500	0.100	0.120	0.057	0.223	2.916	0.038	0.192	2.309	0.853	0.289	3.751
2.500	0.100	0.150	0.058	0.228	2.808	0.040	0.197	2.185	0.853	0.293	3.618

Competitive ladder over multiple continents

Problem: our 1on1 player base is spread over all continents, but only Europe and maybe NA can sustain themselves.

Official servers only in Chicago, Amsterdam and Seoul :(

We (@fluxxu) created Flo, which allows us to host games on our own servers anywhere we want.

GDC[®] GAME DEVELOPERS CONFERENCE | July 19-23, 2021 | #GDC21

GDC[®] GAME DEVELOPERS CONFERENCE | July 19-23, 2021 | #GDC21

Fair global ladder for 1 on 1

Deterministic server selection:

Pick from list of single servers according to utility function of pings for both players:

Utility $_{S} = 0.9 \cdot \max(p_{1}, p_{2}) + 0.1 \cdot \min(p_{1}, p_{2})$

May lead to systematic disadvantage for one of two given players, for example US East vs Europe is consistently hosted on US East (NYC).

Fair global ladder for 1on1

Fair server pairs:

Each server "S" is associated with a bias for player 1 (positive if $p_1 > p_2$):

$$eta_S=\pm\sqrt{\max(0,|p_1-p_2|-20)}$$

For two servers A and B, if β_A and β_B have opposite signs, then that pair of servers is fair if we pick server A with probability:

$$\delta = rac{-eta_B}{eta_A - eta_B}$$

Loop over fair pairs, pick with same utility function:

Utility_{A+B} =
$$\delta \cdot$$
 Utility_A + $(1 - \delta) \cdot$ Util

Conclusion

- Over 3 million games, all the top chinese and korean players on our ladder
- Replicated our melee ladder for community custom maps, support multiple kinds of gamemodes (e.g. 3v3v3v3, battle royale FFA)
- Abstracted out all logic from the game, ready to be applied to your game :)

Go to MatchBox.gg for more information!

