
Hello! Thank you for joining me today. It’s great to be back in person at GDC and I hope 
you all have had a fantastic week so far.  I’m Kevin Todisco, Lead Graphics Engineer at 
Blizzard and I have the pleasure of presenting the work of a very talented team that made 
Diablo II: Resurrected’s renderer a reality.  Before we get going, I’d like to remind everyone 
to fill out those surveys at the end of the talk so that I can make my talks better and also get 
invited back in the future!  Ok, administrative stuff out the way…

I’m here today to pull back the curtain on the bespoke renderer that we created for the 
remaster. I’ll talk about how we approached the project technically, the development 
philosophies we used to govern our technology choices, and give examples of technologies 
we incorporated and how they fit with these philosophies. I’ll also talk about some of the 
lessons we took away from this experience of building a renderer from the ground up -- an 
experience which is quite rare these days -- which are still applicable even when using pre-
existing engines.  To get us going, it’s best to take a look at the game we’re talking about 
developing a renderer for, so…





So that clip gives us a pretty good sense of what we set out to make – a 1:1 
visual reproduction of the original game, in 3D with high fidelity, realistic visuals.

Early on, the decision was made to use the original Diablo 2 engine for the 
remaster in order to preserve the game feel and experience.  As a team, we 
didn’t believe we could recreate all the nuances of the game in a different engine.  
This, in turn, precluded us from using an existing engine, whether proprietary or 
commercial.  The plan formed to build a bespoke renderer on top of the 20 year 
old engine to load and manage the 3D assets.  We considered that we had some 
advantages that would help when it came to building out this new part of the 
engine.  A key one was that the camera angle throughout the game is fixed – it is 
not user controlled, there are no long vistas, only a limited number of things can 
be in view at once.  Another we know up front, roughly, are what features we 
need to support.  We also know common gameplay patterns and just how intense 
gameplay can be.  The disadvantage, of course, is that you have a content team 
with a deadline and no engine to start working in yet.



To set ourselves up for success, we had to establish some guiding principles for the 
development of this part of the engine. The largest challenge at the beginning was 
making sure that the team could be making forward progress. While most projects 
would start with some technology to make assets, we had nothing. 



I mean literally, nothing. 



The very first thing we needed to do was get an asset pipeline up and running. 
Our timeline was pretty tight, so we arrived at our first philosophy: every aspect of 
development must be rapid. Live-updating of assets in the engine is essential.  In 
the early days in the absence of a suite of tools we had a context menu utility that 
the team could use where they could right-click on a file and build it, then drag-
and-drop it into a prototype viewer application for the engine.  As tools matured, 
this turned into a hot-reloading pipeline.  But we also can’t ignore ourselves as 
programmers. We chose to go with a forward-plus renderer, not just because of 
its rising popularity but also because it enables us to rapidly develop new 
materials -- you can write a custom shader for the material in the forward pass
and you’re done.  On top of this, of course, we had things like automatic shader 
reload.



Another philosophy was that no lighting in the game would be baked. This… 
probably seems crazy at first when you consider that our art direciton was pushing 
for realistic rendering, but this is probably the strongest example of a hard choice 
we made to ensure success.  We took this stance for several reasons. 



First, baking takes time. Art would not be able to work fast if they were relying on extensive 
light and shadow bakes in order to give final sign off on environments. It also costs time just 
to implement baking, even if you’re using a pre-existing solution -- you still have to integrate 
it into your pipeline and fit it to your data layout.

Second, Diablo II is a heavily procedural game. Levels are generated using building blocks 
called presets, which are placed adjacent to each other and may contain fixed lighting 
sources. We can’t predict what geometry will be adjacent to a light in an adjoining preset, 
and also some light sources are dynamically placed. From an aesthetic standpoint, Diablo II 
is a very effects-heavy game. Spells fly in every direction and many of those spells 
illuminate the world in the original sprite game, revealing more information to the player as 
they cut through the crippling darkness of dungeons. We stand the highest likelihood of 
being a visually impressive game if we can lean into the dynamism of this lighting.
Third, though least impactful, was consideration for the modability of the game. If we expect 
players to create their own models to put into the game, we don’t want those models to take 
on a different appearance because they weren’t run through some complex baking process.



Another principle was scalability. 



This originally was in place because we needed to support a wide range of PC 
hardware, but later it became even more important as we added Nintendo Switch as a 
SKU. Each technique chosen for the renderer needed to be able to be turned off or be 
scalable in some way.  As an example, our hair and fur isn’t dependent on TAA, so TAA 
can be turned off to save cost.  Our hair, while using a complex lighting model, was also 
developed with precomputation in mind, so it’s roughly the same cost to render as any 
other material.



But perhaps the confluence of all of these things and most important is the 
technology we chose to implement.  We had to be very mindful that while we were 
presented with this great opportunity to start with a clean slate, we can’t try to 
reinvent the wheel.  We have to stick to what works, and that means relying on 
established techniques and picking them off-the-shelf, so to speak.  



Some examples I’ll talk about today are our lighting model, HDR color grading, 
order independent transparency, and specular aliasing.  And there are more 
examples like skin rendering, SSAO, TAA. Each of these is unique in why it was 
included or how it was included, but each shares a foundation in how it was 
selected - it was already proven somewhere else, and it was adaptable.
We don’t have a lot of room to innovate, and where we do we have to pick our 
battles carefully.  Not only do innovations have to be favorable to time and very 
deliberate, they also have to align with our art and technology goals, and our team 
expertise.
That’s not to say that we weren’t innovative in some spaces. Our HDR color grading 
built on the work that it was inspired by, our hair rendering was a leap forward, our 
solutions for skin rendering and specular aliasing needed to be tweaked to fit in the 
engine, and our order independent transparency was heavily optimized over time. 
I’m getting a bit ahead of myself…



Before we dive in, here’s a quick look at everything we’ll cover today.



Building a renderer from the ground up gives us a unique opportunity to design from the 
start with a modern pipeline in mind.  The advent of high dynamic range output 
necessitated a shift that challenged conventional methods of color grading and 
tonemapping, so these were two areas that we could implement with a modern approach 
from the outset, instead of having to overhaul a piece of established technology.  This, 
here, of course is an idealized layout – the kind you can plan for up front.



In practice of course it changes quite a bit.



Let’s take a look at a full frame first.



We have UI rendering at the start of the frame in order to generate a stencil to prevent 
shading those pixels that you won’t see behind the UI.



Next are shadows. One main directional shadow caster, another map for character 
shadows specifically, spot light shadow maps are cached with the results from static 
geometry, and the omnidirectional player light shadows.  Something notable here is that we 
did not need to spend time implementing cascade shadow maps, because of the advantage 
of the fixed camera, and limited view range.



Next we have a LUT generation pass which combines the active color grading LUTs from 
the scene and also precalculates tonemapping and display mapping so that we can save 
the cost of the full tonemapping ALU for every pixel.  The result is stored in a 65^3 LUT and 
is used later during tonemapping.



Then we render out the terrain mesh to a height map, which will be used for a few different 
things including the placement of grass and other ground clutter.  We also render things like 
actors, items, and objects into a top-down view so that they can influence grass that we’ll 
draw later.  This is how we can flatten out grass where important gameplay elements like 
dropped items need to be seen.



We then run a compute job using the terrain height and the grass force map to calculate 
positions and properties for grass blades and clutter models along the ground plane.  The 
system is driven procedurally by artist-controlled thresholds and noise based on world 
position to determine whether grass or other clutter should appear at particular locations.  
Each grass blade and piece of clutter are stored to an indirect draw buffer to be drawn 
during the forward pass.



Now we have our depth prepass, which includes the clutter draw call list we just 
assembled.  Something notable about the game is that our depth range is extremely narrow 
because the camera is relatively far from the scene with a narrow field of view.



Grass is the one thing that is deferred shaded in the engine.  This was done because it 
gave a significant performance boost on our lower-spec platforms.  In this pass we render 
the grass to a visibility buffer and a data buffer, which allows us to stencil out pixels from 
the forward lighting pass that will be obscured by grass.



We then bin our lights into screenspace bins.  This is done in two compute passes.  The 
first calculates min and max depth bounds for the bin, which allows us to discard lights from 
a bin if their energy isn’t going to reach the anything in the bin, in terms of depth.  With the 
bounds established we can bucket lights into screen bins.



We then use the binned lights and our depth buffer to render a buffer we call global 
attenuation.  This is a bespoke technique specific to Diablo II that allows us to remove 
ambient light influence from areas that are not otherwise being lit by a punctual light source.  
This was a critical element to mimicking the visuals of the original game and maintaining 
the dark atmosphere that Diablo II is known for.



Finally, we get to forward lighting.  This will take up a large chunk of the frame as it churns 
through all the elements of the scene.

We then perform a deferred shading pass on grass, only on the pixels stenciled from the 
visibility pass.



With all the opaque geometry rendered, we can do an SSAO pass.



We then calculate mipmaps of the opaque scene, and use that to render out refractive 
materials like glass and water. We’ll also use the mip chain in our screenspace reflections 
pass.



We then render transparent elements to the screen in three batches - blended, additive, 
and what we called ghost.  Ghost are those elements that are typically opaque, but need to 
be rendered transparent.  This includes walls, characters, and items.  For example, some 
skills in the game make your character transparent, and some monsters are ghostly.  The 
ghost technique renders the subject first to the depth buffer, then a second time with an 
equality depth test so that only the frontmost surface of the subject is shown.

Transparency is rendered in tiers, with some effects rendering at half or even quarter 
resolution, depending on both individual effect settings as well as the quality level for the 
platform.



We upscale the transparent mips and then resolve the blended and additive effects buffers 
to the main framebuffer, and prepare for post.



Our bloom is based on the Call of Duty implementation, with the addition of blue noise in 
order to dither out faint bloom over the often dark backgrounds of Diablo II in order to 
prevent banding artifacts.  Atmospherics only consists of depth fog and height fog, both 
driven by our time-of-day system, and finally tonemapping applies the generated LUT from 
earlier in the frame, and we smooth out the edges with temporal morphological anti-
aliasing.



Depending on the platform, perform upsampling and sharpening.



And finally, a bit different than most renderers, we not only compose UI and the 3D scene, 
but also the 2D scene as well.  You could look at the render engine in the game being two 
completely separate ones -- the original sprite renderer, left largely untouched from what it 
was; and the new 3D renderer.  The legacy toggle feature is simply choosing a fork in the 
road.



There are also some compute jobs that are either run intermittently, on startup, or 
asynchronously with rendering.  On startup, we precompute a light diffusion texture for skin 
rendering.  As hair textures are loaded, we calculate mips chains for the hair -- the reason 
for this is that the mip chain calculation for the hair is more involved than traditional mip
calculation.  And asynchronously we run a job to resolve the terrain layer stack into two 
large terrain textures used for terrain rendering during the forward pass.



Let’s take a closer look at lighting.



Our lighting model was inspired by previous writing on physically based rendering on both 
Frostbite and Unreal.  One thing we found helpful as we were standing up the renderer was 
to establish a contract with our artists that the visual behavior we were looking for would be 
similar to Unreal Engine, which would allow them to prototype in a space where they’d have 
some confidence they would understand what the final assets would look like.

We use a GGX specular term with Schlick’s approximation and the Smith/GGX correlated 
visibility term.  We also added a multiscattering energy conservation term derived from 
Fdez-Aguera 2019.

One notable thing that we also included in our forward pass is a term to reduce specular 
aliasing.  Our art team pushed visual fidelity very high, and many of our art assets are 
extremely dense in polys.  As a result of the far viewpoint of the game camera, the 
sampling rate even at high resolutions is insufficient to represent the high geometric normal 
variance on much of the world geometry.  The result is a high amount of specular aliasing.



Our solution to this was based on a technique proposed by Kaplanyan et. al. from 
2016, filtering the NDF using variance of the half vector across the shading 
quad. While intended to be adaptable to a forward renderer, making it an ideal 
candidate for us, using the half vector was not feasible for performance 
reasons. Because we were aiming to have so many dynamic lights in the scene, 
we’d be dealing with dozens or even hundreds of half-vectors to calculate quad 
derivatives for. We really only had room to calculate the derivatives for one. The 
spirit of the technique is to leverage the derivatives to understand the surface 
complexity of the geometry being shaded, and that’s also possible to determine 
using the surface normals, so we do this instead.



Here’s a code snippet.  We take in the geometric normal and get the derivatives across 
the quad, then use the same variance calculation from the paper and add that to our 
linear roughness value used for shading.



Now, I mentioned at the beginning how a key philosophy to development was to 
make everything scalable.  I also mentioned that we didn’t have any baked 
lighting, in order to embrace the dynamism of spells. So, an appropriate question 
at this point is “how do you make the many lights situation scalable?”



Here is somewhere we embraced the advantage that the game camera is fixed –
always the same angle and distance from the scene.  This allows us to maintain a 
3D lightmap of the area surrounding the player and render lights into this 3D 
radiance map during a preprocessing step in the frame. 



The lights are encoded with a compute shader into two 32x8x32 fp16 textures, for 
precision.  One texture accumulates the directionality of the light relative to the 
grid position, while the second encodes the light’s radiance.  The resolution of the 
maps can vary to tradeoff between quality and performance.  On our 
recommended specification or above, we just calculate complete lighting for 
every individual light and do not use the light maps unless under very heavy load.

We then use these light maps during forward rendering by calculating the position 
within the map of the point being shaded and using the radiance value as if it 
were a directional light.  



Here’s a scene where there are several instances of an effect, charged bolt, that each 
have a light.  In this case, every light is being individually calculated.



When we use the radiance map much of the diffuse lighting is preserved but the 
drawback is that the impact to specular highlights are mixed.  The highlight from the 
torch is very close, but the highlights from our effects have almost disappeared in some 
places.



To attempt to reclaim some of the complexity lost in the form of specular 
highlights, we also included a weighting to the light intensity of light directions that 
are close to the view direction.



And going back to original radiance map image, this is where we were.



And this is what we get with specular weighting.



Now if you directly compare this to the original, it’s closer at giving us nice specular but 
isn’t close to the ground truth.  This is of course, a contrived example.  When there are 
many effects flying around the screen and we’re under heavy load, the difference is less 
noticeable and was considered an acceptable tradeoff.



Let’s take a look at tonemapping and color grading next.



Our approach to tonemapping and color grading is based on the work done for 
Call of Duty.  This was an area where we had an opportunity to try new ideas 
because it aligned with our expertise.  The work from Call of Duty reinforced the 
idea of two separate tonemapping operations – tonemapping as look 
development, and display mapping for the target display.  In D2R, we gave some, 
but very limited artistic control over the tonemapping curve, to the point where it 
was nearly linear.  The toe deviated only slightly from linearity.  The curve’s 
primary purpose was to round the peak brightness in the scene off to 10,000 nits, 
the peak brightness of the HDR standard.  The idea was to move most of the 
responsibility for look development to color grading.



The second tonemapping curve is contextual to the display -- typical sRGB for 
LDR displays, and a variable tonemapper for HDR displays that can be adjusted 
depending on the peak brightness of the display.  For this curve we use the 
BT.2390 specification just like Call of Duty.



For color grading we built on previous work from both Call of Duty and Frostbite 
by leveraging Davinci Resolve but removing the need to embed the grading LUT 
in the sample image.



A linear HDR screenshot of the game is exported in EXR format.  The screenshot 
is taken without any tonemapping or post-processing applied.  We also export a 
LUT that encodes our LDR tonemapping pipeline.



Over in Resolve, the project can be set up by importing the EXR screenshot and 
configuring the project to apply our LDR tonemapping LUT.  This ensures that 
what the artist is seeing in Resolve is an exact match to what they can expect to 
see in the game. When an artist is done grading a scene, they can export a 
65x65x65 LUT also in the cube file format as the color grading data for that 
scene.



At build time, these cube files are consumed by our build process and converted 
into 3D dds textures, which are then compressed and ready to be used at 
runtime.

There are two systems through which an artist can leverage color grading in the 
game – time of day and visual data volumes.  At any point in time during 
gameplay, grading LUTs from two time-of-day keyframes are combined along 
with any active visual data volume.  These three LUTs are combined in a 
compute process into our universal CLUT, which also includes both tonemapping
and display mapping, and is applied just prior to anti-aliasing at the end of the 
frame.



In the 3D LUT, precision can become an issue.  The majority of our samples out 
of the LUT are going to be at the low end [maybe a histogram view of the 
sampling pattern out of the LUT?].  This gives us insufficient precision if we store 
the values linearly, so a shaper function is required for better distribution.  We 
chose PQ as our shaper function, but I’d like to note that this is far from optimal 
as the PQ encode/decode scheme involves several transcendental functions.



Let’s talk about transparency next.



The first thing to talk about here is why we chose order-independent transparency 
– OIT – over traditional ordered transparency methods.  The primary reason was 
the density of effects we expected to have in the game, and the limited depth 
range we expected to be working with.  The combination of these two things 
made us anticipate many situations where the sorting of effects would become 
unusually complex.



Our initial implementation was based on a weighted blended order-independent 
transparency paper from JCGT by Morgan McGuire.  It supported four blend 
modes – additive, additive with alpha, premultiplied, and alpha blend.  All 
transparent objects would be rendered into two targets – a color buffer containing 
the additive color and the effect’s alpha value, and a transparency buffer 
containing blended effect colors weighted by alpha and depth, with a weight 
encoded into the alpha channel.  Our weighting formula went through several 
iterations over time but we settled on this calculation here.  This first version has 
128 bits per pixel of bandwidth during transparent rendering, which we’ll see 
became the main focus of optimization.



To resolve the two buffers, a fullscreen pass reads the transparency value of a 
pixel and weights the transparent color, then the alpha value of the pixel lerps 
between this color and the additive or scene color. 



Before we get to optimization, one of the things we learned throughout 
development is switching an art team from traditional sort-based transparency to 
order-independent transparency is not an automatic sell.  There were a lot of 
growing pains.  We got many questions during development about how to make 
effects sort differently or how to manipulate the weight of different effects to force 
them to sort in a particular way.  It required a lot of collaboration on the part of the 
team to help our effects artists get the results they wanted.

Much of the issues we had were around additive effects.  The first problem 
fielded was about how additive effects were being dominated by alpha blended 
cards.  A frequent question we would get was “how do I make this card sort in 
front of this other card” to which the response was usually a less-than-helpful 
“well… there is no sorting.”



Our first solution to this was to put some additive color into the transparent buffer, so that 
it had influence over both color contributors in the resolve step.  This worked for a time, 
but it wasn’t long before our effects artists found some new problems.



The line of questioning essentially became “additive effects are not really behaving like 
we expect additive effects to behave.”  In this case, we can see the additive white sphere 
blending unexpectedly with the alpha blended blue sphere where there is overlap.  Our 
team’s expectation was that the white sphere would just plainly draw over whatever was 
behind it.



To solve this, we separated out additive effects into their own render target and 
modified the resolve so that additive effects always drew over blended effects.  
This aligned better with our artists’ expectations of how additive effects would 
work.



To solve this, we separated out additive effects into their own render target and 
modified the resolve so that additive effects always drew over blended effects.  
This aligned better with our artists’ expectations of how additive effects would 
work.





Now, return to optimization, 128 bits-per-pixel is a high output bandwidth 
requirement, and this harmed the performance of our transparents rendering on 
lower-end platforms.
Our change to apply additive color over the resolved transparency color offered 
us a new optimization opportunity.
The idea is that we can move additive effect application to an entirely different 
render pass.  The cost of this would be a new render target – we’d be trading 
memory for performance here, but this was worth it for us.  We can then use that 
change to reduce the amount of information required to resolve alpha blended 
effects to just transparent color, weight, and alpha.



So this is our new render target layout.  Still FP16 for the weighted transparent color and 
alpha, and the second target is an 8-bit target that we called the revealage buffer which 
effectively describes the relative visibility of an effect.



In our resolve step we take the accumulation value and treat it just like our transparent 
value from before, and use the revealage value to blend between it and the scene color.  
Additive effects are then rendered over top in an entirely different render pass.



This brought the bandwidth down to 72bpp, however we had to bump revealage
up to r16 in order to have sufficient bit depth for HDR



Leaving us at 80bpp.



The reduction in output bit depth was a huge win for us, saving up to 20% GPU time 
spent on transparent rendering in our stress test for effects – this was measured on a 
GTX 1080, so those ballooned even further on consoles.

The takeaway for us after implementing OIT is that it can work great, but recognize that 
you’ll have to go through several revisions and collaborate closely with effects artists to 
get the right algorithm for the game you’re making.



Now, hair rendering.  I’m actually not going to go into any detail here, because there’s an 
entire talk about it by my colleague Ace this Friday at 1:30 in 202.  Go check it out if 
you’re interested.



Quick stock of where we are.



Ok, so what does all this look like on the hardware?  Here’s a capture of a frame on an 
Xbox Series X.



We start with UI rendering.



Followed by shadows.



LUT generation



Terrain height map and grass and clutter generation.



Depth prepass



Light binning and global attenuation



Then the main event, forward lighting and deferred grass lighting.



SSAO



Refractive materials and screenspace reflections



Transparent rendering and the OIT resolve step



Post processing like bloom, fog, tonemapping, and color grading



Morphological antialiasing and upsampling and sharpening



And finally composition with UI



One of the major tradeoffs to a forward renderer which we fought throughout the project 
was wave occupancy.  With the entire lighting model built into one shader, VGPR usage 
is very high.  We can see here that in the forward pass achieving high occupancy is 
difficult because of the high VGPR usage of the pixel shaders.  Later in the frame, our 
transparency shaders suffer from a similar problem both because some of them are lit, 
and because of the high complexity of our effects shaders.



We had a constant battle throughout the project to try to keep VGPR usage down 
while also responding to changes requested by lighting that would affect the 
feature set and intricacies of the lighting routine.  Any change to the order of 
application of lights needed to be audited for its impact on VGPR usage, and after 
a certain point any addition needed to be balanced with a cut.  We found in some 
cases that simply changing the order in which we calculated contributions from 
different lights or shadow terms could have an impact on VGPR usage. 
[measured in Razor GPU for PS4]

But we did have one advantage: all our shaders were entirely hand-authored.  
We made a conscious decision not to implement a shader graph system.  This 
meant we had a little more freedom when it came to hand optimization.  Let’s look 
at an example that highlights all these points.



The global attenuation system that we included to suppress ambient light and 
achieve unnaturally pitch-dark areas of play, was initially calculated inline in the 
pixel shader.  Pseudo-code would have looked like this – for each light of each 
light type, evaluate the contribution of the light and accumulate contributions into 
a variable.  At the end of the shader, calculate ambient light contributions (IBL), 
and multiply the contribution by the accumulated amount of direct light (clamped 
to 1).



The problem with this is it means that a single variable is stored for almost the full 
duration of the shader, which means it will hold onto a VGPR the whole time.  In 
theory, freeing this would only free up a single VGRP, but in practice it can 
actually lead to much more opportunity for the optimizer and open up other 
opportunities for savings.  



We separated out global attenuation into a separate pass, and rearranged terms 
so that each light loop was self-contained and could recycle VGPRs.  This 
brought our VGRP usage down by up to 20 registers in some of the most 
complex shaders.



Some of the lessons learned from these exercises – minimize or avoid variables 
that have long lifetimes.  Explicitly avoid storing the same information in more 
than one variable.  Favor contained blocks of work that don’t share information.  
Experiment with rearranging terms because simply reordering can have an 
impact on VGPR usage.  I don’t think that this is because shader compilers aren’t 
smart; on the contrary, it’s because they are so complex.



Going back out to a high level again, I’d highlight one more thing about this GPU 
overview.  An experienced graphics programmer likely sees a lot of opportunity for 
optimization here.  There are some gaps where the GPU is idle; vertex pressure is 
very high in several places which indicates that some scene objects are too high 
poly; and there is plenty of room in the early frame where VGPR occupancy is low 
enough that it’s a large opportunity for asynchronous compute.

A large reason for this is the lack of maturity of the engine.  I talked about in the 
beginning how we need to make tradeoffs of time and effort in order to reach the 
finish line, and this is a great example of that.  While these opportunities for 
optimization exist, being in budget was top priority and once there, our priorities 
would become quality or other art concerns.  In a more mature engine, these 
optimizations are tackled over the course of several iterations of the engine, 
potentially over multiple titles.

Speaking of asynchronous compute, not shown in this frame is the largest job for 
which we used asynchronous compute – terrain generation.  Terrain is not 
computed every frame, but rather cached in a large virtual texture and generated at 
intervals as you traverse through the world.  In order to avoid spikes in frametime, 



we attempt to hide the cost of computing new terrain tiles in asynchronous compute.



Here’s a frame where the entire visible terrain is being regenerated, for 
demonstration purposes.  We can see how even when regenerating such a large 
area of terrain, the cost is absorbed well by filling gaps at the start of the frame.



Shifting gears over to the CPU.  We had two goals with the CPU design of our renderer.  
The first was to take advantage of multi-threaded command list generation made 
possible by modern APIs.  And the second was a producer/consumer paradigm with the 
original engine, which would offer up the data on what we needed to render and that 
data would be consumed by the rendering engine to put the 3D assets in their respective 
places in the world.



Taking a look at a frame on the CPU…



At a high level we’ve got the tiniest of time associated with the original game update –
this is a game that ran on CPUs 20 years ago, so on modern hardware this is lightning 
fast.



Right after that we find a translation layer acting on any new information available from 
the game simulation.  I’ll elaborate on that a bit more in a second.



And there’s also the portion of the frame dedicated to sprite drawing, all happening on 
the main thread.



Digging in further we can see how work is distributed for the translation layer.  The 
portions which stand out the most is the amount of time spent updating animation poses.



There are very small chunks of work dedicated to the terrain.



And finally another small chunk of work dedicated to miscellaneous unit events, such as 
a unit that’s currently fading in or out, changing its state, or otherwise acting in such a 
way that we need to reflect the change in 3D.



Pertaining to rendering, we can see how work is generated across multiple threads, 
coordinated by the latter portion of the main thread – we didn’t have a separate main 
thread/render thread model.



We can see here the commands for the forward pass, post processing, depth pass, 
shadows, transparents, and early frame work like clutter and fluids.



We can also see lots of small work dedicated to our effects system, PopcornFX, before 
they are all collected and encoded into a command list, in this case on the same thread 
as the depth prepass, but that can vary depending on thread load.



All of these generated command lists are then collected and submitted in a 
predetermined order back on the main thread.



Perhaps something very notable about the upbringing of the renderer is that we did 
not start by constructing it with multithreaded command list generation.  We did 
know that we had the option to leverage this capability of DirectX 12, but with the 
goal of standing something up fast, opted to keep render work initially single-
threaded and even run it on the main thread rather than a render thread.  One of the 
justifications, at the time, felt sound - the main thread of Diablo II, a 20 year old
game, is extraordinarily lightweight and was unlikely to interfere with the time spent 
submitting render work.

What we didn’t count on was the time taken by our translation layer which lived 
between the original game engine and our new renderer.  We created this shim as a 
means to manage a correspondence between all things in the 2D game -- known as 
units -- to all resources used for them in 3D.  So for example you might have a 
monster, that’s a unit, and so this monster when spawned by the game would pass 
through the translation system and we’d load and create a model and animation set 
to represent this monster in 3D.  Similarly for objects, items, missiles; everything.

Now, with the amount of stuff that can be happening at any given time in Diablo II…



… managing this translation layer becomes pretty taxing on the CPU, leaving us 
less room to perform a single-threaded pass for all render commands.  So we 
broke the work up into a job-based system



Our architecture is not too dissimilar from others out there.  The core unit of work is a 
RenderTask.  It operates on a producer/consumer model – render tasks take in different 
requirements, like what view space constants they need; they can wait on fences, 
specify what resources they consume, and even have an order they’re submitted to the 
GPU.  Tasks will output any fences they signal, as well as any resources they produce 
that may be consumed by other render tasks.

All render tasks are added to a complete render graph which represents the work 
generation for the entire frame, and then that graph is compiled at which time it can be 
checked for dependency issues or conflicts, and generate the actual jobs that will run to 
generate command lists.



We learned a few things retrofitting a single threaded renderer with a job architecture.  
The first was that it’s easy to take a job system for granted.  When we started this, we 
didn’t have one so we had to invest in integrating one.

Second, adding multithreading to any application is complicated.  Something is going to 
go wrong, and it’s going to be a huge disruption.  This was very difficult for us because 
there wasn’t very much room for error – the entire team needed to keep working which 
put a lot of pressure on getting something very complex right the first time.

Ultimately, it’s very worth it to start with the multithreaded design first to avoid this 
disruption.  Even if your upfront cost seems high and it takes longer to get a point where 
your team can start working at full speed, it saves the even greater cost of disruption late 
in the project.



Some quick notes about streaming in the game.  Diablo is a heavily procedural game 
with large outdoor spaces.  Even the original did not load all sprites for an act at once 
and streamed them into a cache as needed.

For us, everything needed to be loaded asynchronously in order to guarantee smooth 
gameplay and traversal across Sanctuary.  However, we retrofitted these asynchronous 
loads after initially developing with blocking loads, since, up front in the absence of any 
existing streaming system, that was easier.  However, just like retrofitting multithreaded 
command list generation, this was very difficult and very risky.



As you move through the world assets are streamed and instantiated around you not too 
far outside the view of the camera.  There are several tiers of streaming range – the core 
of the tech is based off of the room architecture of the original game.  The purple debug 
regions indicate the rooms adjacent to the room the player is currently in.  The green 
boxes are the bounding boxes of entire presets, which are larger scale than rooms.  You 
can think of a room as a logic unit and a preset as a variable chunk of the environment.  
There is a room activation radius around the player that will load the assets needed for 
that room if it falls within the activation radius – this radius is larger than the rooms 
immediately adjacent to the player.

Entities and models are instantiated on a different range.  Here we can see this in action.  
In the upper left are some statistics about how many entities there are, and to the right is 
a list of the active rooms and presets.  Generally the goal of the activation radii was to 
ensure a consistent stream of assets over sudden spikes of file IO.  However, when 
approaching a town there still can be a lot of streaming requests to absorb, as the towns 
are the largest presets in the game.



Now, over the course of the project we worked to get texture loading entirely blocked by 
file IO, particularly by relying on direct copies to video memory on consoles.  In order to 
prevent file IO from blocking the game, we created a texture manifest of all textures 
which contained the properties required to create a footprint for the texture – things like 
size, format, mip count.  As a load request would come in for a texture, we could look up 
the texture in the manifest and create the object with empty data, and simultaneously 
kick off the asynchronous load of the actual texture.  Later when the load finished, we 
would copy the new texture contents to video memory.

In a crude implementation of mip streaming, we would also create thumbnails for each 
texture that were small enough to be directly embedded in the manifest, once again to 
entirely avoid file IO being a bottleneck to texture loading.



One more thing I think is worth talking about is our experience with LoDs.  This was a big 
challenge for us for a few reasons.  First, our art team was pushing a very high fidelity
level for this game.  Yet, at the same time, we've got a brand new engine that's being 
developed while assets are being made.  The reality is, we don't know what our 
performance characteristics are going to be.  So the best thing we can do is guess in 
order to give some guidelines for the team to work with - not giving them any guidelines 
would be a huge mistake - but the guess comes with a big asterisk that it's subject to 
change later in the project.  The challenge here is that if you are conservative with your 
guess, your art team may not be too comfortable with the answer, and you don't yet have 
the evidence to back it up.

But there are some things that we can use to make an educated guess.  We have prior 
games that went through the same exercise and while the budgets may not be exactly 
the same, they can give us a reasonable starting point.  As an example, for our highest 
SKU we set an initial budget of 2.4M polygons per scene for characters, and 6-800k for 
environments.  These were based off of a previous title we released on the Xbox One 
and PS4, and were extrapolated out to newer PC hardware.  I didn't say that backwards, 
this is very lopsided from what you'd expect in a budget, but the reasoning was that there 
could potentially be hundreds of characters on screen at one time, and the environments 
always have a limited area in view and are relatively simplistic.



Further into development, as the engine matured, we were able to do something more 
scientific.  For characters, we classified them into categories: bosses, which you only 
ever seen one of at any given time; standard, which may appear in small numbers; and 
mob characters, which can have many instances on screen at the same time.  We also 
categorized by load: combat scenarios like light, medium, and worst case, where 10, 30, 
or 100 or a particular monster would appear on screen at once.

We took a few monsters to represent each category and measured the impact that 
different polygon counts had on both a GTX 1080 and a PS4.



Here's an example of that data.  On the PS4 we can see that we can gain two and a half 
milliseconds between shadows and forward lighting in the medium load case by reducing 
this monster by 75%, and a whopping 8.5 ms in the worst case.  But we're also missing 
some other potential data points between lods 0 and 1.



Looking at those we can see that savings aren’t necessarily linear with reduced 
polygons, at least in the engine we were building.  There was a point where we’d see 
diminishing returns and the effort required to reduce geometry further didn’t make sense 
given the performance gain we’d realize.  So this told us that we could raise the LoDs on 
some platforms, and we picked values that represented the best tradeoff between 
decimation effort and returned performance.  And this was an important reduction of the 
optimization burden on the art team because you probably raised an eyebrow when I 
said decimate by 75%.



In fact, because of our range of SKUs there were some cases where we would have to 
decimate over 90% of the original LOD, and this is a huge problem because very rarely 
is this just going to "work" well.  In practice, we ended up implementing two choices for 
our artists to decimate: we started with a proprietary decimator because - following a 
theme here - we could leverage internal expertise.  But later we also added a Simplygon
pipeline and created an interation loop in maya that would allow an artist to decimate and 
then see the results immediately in Maya in order to fix up any unwanted artifacts by 
hand.  They could export these adjusted LODs as overrides to the automated ones.



One thing we can take away from this experience is the importance of establishing your 
performance metrics early. But the real lesson coming out of our journey with LoDs is 
that it's important to avoid getting lost in numbers and instead focus on the bigger 
picture.  We ended up focused too often on polygon counts, when that wasn't ultimately 
what mattered.  If it runs in the time it needs to, you've accomplished what you need for 
that scene, even if on paper the geometric density of the scene sounds too high.  And on 
the other hand, it's important to ask where the detail is going.  And to illustrate that 
point…



Here are four LODs of the barbarian viewed from the game camera.  How easy is it to tell 
the difference between them? Not very.  There are some artifacts that stand out if you 
look very close, but ultimately with how small things appear in the game, we had 
opportunity to get away with a lot of reduction.



So, in the end, we shipped a game, we resurrected Diablo II with modern visuals, it 
was a job well done, but what could we have done better?

The first thing that comes to mind is that our scalability, while impressive across a 
range of hardware like top-of-the-line PC down to the Nintendo Switch, did not 
actually represent significant tradeoffs between performance and quality.  I talked in 
the beginning about how scalability was one of the key philosophies throughout 
development – every technique included needed to be scalable or be turned off.  
We almost did a little too good here, and it was a double-edged sword – on the one 
hand even our lower quality visuals look decent next to our highest quality visuals, 
which is good news for those on less powerful hardware; but on the other hand, 
without a significant enough quality increase with certain options, one would be 
inclined to ask what the benefit of sacrificing framerate is for a minimal visual quality 
gain.

The lesson here is to invest time and effort into ensuring that your quality options 
are meaningful to your players.  This can be a delicate conversation with the art 
team.  But each option must feel like an important tradeoff between performance 
and visuals.



And of course the second improvement would be to lead with a multithreaded work 
architecture, and asynchronous streaming too.  It’s one thing to make a significant 
multithreading overhaul as a key technical effort during a project when you already 
have an engine that people can work in.  It’s another thing entirely to do it while 
you’re still building that engine and the technology that your art teams are relying on.  
Risk is significantly higher, as is the cost of disruption.



And finally, the lessons we learned, which I hope are useful for all of you today.

First, if you’re setting out to make a new renderer, do not, do not underestimate just 
how much value you get from existing supporting technology.  It’s easy to take this 
for granted and you only miss it when it’s not there.  When we first went down the 
road of multithreading we were hit with the realization that we didn’t even have a job 
system, so we started several steps behind.  Even if we can pull one off the shelf, 
that’s more work that needs to be done to add that foundational technology.  And as 
another example, we had to roll our own shader permutation building and loading 
scheme.

Second, fit the technology you’re making to the context.  We made our technology 
choices to favor rapid development and work in tandem with a highly procedural 
game, and service the salient points of gameplay.

Third, if you are choosing to innovate, make sure your innovations align with your 
project goals and your teams’ expertise.  Aligning these will help make your game 
better and save you time and effort.

And finally, always be on the lookout for advantages you have or shortcuts you 
could take.  I can’t overstate just how much work the fixed camera in Diablo II saved 
us overall.





Also, if you’re interested in the complete technical story of how we turned a 2-
dimensional game into a 3-dimensional game – which, why wouldn’t you be? – stick 
around to see me talk about that in this same room!











Our skin rendering is based on Penner’s pre-integrated skin rendering from 
SIGGRAPH 2011. A diffusion profile for human skin is calculated and 
parameterized on NoL and curvature. While Penner’s original technique calculates 
curvature using normal variance across a change of world space position, we found 
that it was convenient for our character artists to export a thickness texture 
alongside the typical albedo, normal, and roughness maps; and we could use 
thickness as a substitute for curvature and still get compelling visual results for skin.



Here we can see some results.






