GDC

March 20-24, 2023 San Francisco, CA

Spatial Audio: From Screen-Based to World-Based with AR and VR

Jean-Marc Jot

Founder and Principal, Virtuel Works LLC linkedin.com/in/jmmjot

#GDC23

An example of silent multiplayer AR demo (2022)

Sennheiser - Ambeo AR app, Magic Leap spatial audio (2018)

Example of a future "Metaverse" audio experience

6-Degree-of-Freedom listener navigation and placement of sound objects.

Real and/or virtual performers, audience members/avatars, and environment elements.

Wearable AR display device: wireless, acoustically transparent, low audio latency, low power/heat.

Interoperability of apps & devices deployed by independent vendors.

Some questions addressed in this talk...

- Opportunities enabled by spatial audio technology
 - in screen-based vs. world-based applications
 - in AR vs. VR applications
 - for diegetic sounds vs. music.
- What level of naturalness and immersion do devices and engines enable today?
 - What are some technological challenges that persist?

About me...

Virtuel Works Founder, Principal Consultant

iZotope/Soundwide 20 mo **VP** Research, Chief Scientist

Magic Leap 3.5 y VP, Head of Audio & Media

DTS/Xperi ~8 y Sr. VP, R&D

~10 y

Creative Labs Audio Research Fellow

IRCAM + PhD studies ~10 y **Audio Research Scientist**

9 mo Immersive & XR audio/music Technology IP creation/strategy.

> Audio/music production SW Audio processing innovation/research.

Augmented Reality HW & OS Spatial audio, electroacoustics (ML1).

Audio SDK for consumer devices TV, mobile, immersive audio (DTS:X).

Computer & mobile peripherals Game 3D audio standard (EAX).

Computer music creation SW Spatial audio, room acoustics (Spat~).

Context of audio technology evolution – from 1990s to 2020s...

- From "surround" to "immersive" audio (new audio content formats)
- From "stereo speakers" to immersive wireless headphones, soundbars, car audio systems
- The coming of age of Ambisonics and the "unleashing" of binaural 3D audio experiences
- From game audio to XR audio (Virtual and Augmented Reality)
- Scope of interactive spatial audio technology: from podcast and movies to games and XR
- Binaural 3D audio rendering is a required feature in head-worn display devices.

PanningOcclusionHRTFObstructionAir absorptionReverb "zones"			Multiple reverbs,	Insert & output	Insert & output FX		
Directivity Orientation Distance Doppler	Dynamic reflections	Reverb "morphing	aux. FX	Own-vo reverb	ice	Phys rend	
1998	2000		2005		2010		
PC " <i>HW</i> c	acceleration	, ^{'''} (Console		Mobile	Web	
VRML2	MPEG-4						
I3DL1	I3DL2 C)penAL		OpenAL EFX	< label{eq:starter}		
DS3D	XA	udio	FMOD	Wwise		VisiSonics	
A3D1	A3D2	Unre	al	Unity		Two Big Ea	
FAX1	EAX2	EAX3	EAX4	EAX5		Impulso	

sics-based lering

2015

 \rightarrow

o VR

WebAudio

Google NVidia AMD ars \rightarrow Facebook anic \rightarrow Valve

Considerations about spatial audio in interactive applications – similarities and differences

- "Screen-based" vs. "world-based"
- VR vs. AR/MR
- Diegetic and non diegetic sound elements.

From 2D to 3D interactive audio

Video presentation	2D Screen (legacy console, PC)	Tethered VR (recent console, PC)
Listening experience	 Fixed (sitting) Sounds stick to screen and speakers. 	 3-DoF: respond to head rotation (while sitting) Binaural rendering is required Sounds follow global scene rotations.
Spatial audio compute	 MIPS: ~15% max Memory: tight. 	 MIPS: ample resource Memory: loose.
Mixing workflow	 Submix FX: OK Low channel count. 	• Binaural or multi-channel submixes.

Untethered XR (mobile)

- **6-DoF:** rotation + navigation (walk around)
- Binaural rendering is required
- Sounds must stick to identifiable objects.
- MIPS: 10%~15%
- Memory: tight.
- Multi-channel submixes
- Submix FX: costly.

Magic Leap Soundfield Audio (MSA) engine and API

developer-docs.magicleap.cloud/docs/guides/unity/soundfield-audio/soundfield-components

In ML1:

- **Object-based binaural rendering**
- **3-D** and near-field positional audio
- Perceptual room model
- Source radiation model
- Physics-based distance/depth model

- **Spectator motion tracking**

Video and audio rendering according to relative object-vs-spectator positions and orientations

From 2D to 3D interactive audio

2D Audio

- **3D Audio**

 - *M* + Q > 16 ... "fat mix pipe" => processing per object is more efficient.

Virtualizer was not needed

 $M + Q = 3 \sim 6$ mix channels => processing a submix was cheaper than processing per object.

Virtualizer is now required

=> additional baseline compute cost

Magic Leap Soundfield Audio (MSA) engine and API

developer-docs.magicleap.cloud/docs/guides/unity/soundfield-audio/soundfield-components

ML1:

健 🗹 MSA Source (Script)		🔯 🕂 🌣,	🔻 健 🗹 MSA Listener	
MSA Distance Attenuation: Min Distance: Max Distance: Rolloff Factor:	Distance properties		Reflections Gain (dB): Reflections Delay: Reverb Gain (dB):	Ro
Omnidirectional: Inner Angle: Outer Angle: Outer Gain (dB): Outer Gain LF (dB): Outer Gain MF (dB): Outer Gain HF (dB):	Radiation properties	50 340 0 -3.7417 -7.9588 -21.938	Reverb Delay: Reverb Decay Time: Reverb Decay LF Ratio: Reverb Decay HF Ratio:	
Gain (dB): Direct Gain (dB): Direct Gain LF (dB): Direct Gain MF (dB): Direct Gain HF (dB): Room Gain (dB): Room Gain LF (dB): Room Gain MF (dB):	Per-source offsets			
Sou Scale: Alpha:	urce Radiation Gizmo Properties	0.25		

Technological challenges and opportunities

- AR audio rendering adaptive to runtime physical environment
- Simulating acoustic propagation...
- Binaural rendering technology...

docs.microsoft.com/en-us/gaming/acoustics/what-is-acoustics

Binaural rendering technology

- **Simplification of HRTF models** (equalization, low-frequency extension, near field effects...)
- **Binaural rendering from Ambisonics** (efficient implementation, 3-DoF head tracking)
- Individual customization of head-related transfer functions
- **Binaural multi-channel object-based audio** (preserving the ITD cue)
- Binaural externalization processing (<u>web demo</u>)

Recap: questions addressed in this talk...

- Opportunities enabled by spatial audio technology
 - in screen-based vs. world-based applications
 - in AR vs. VR applications.
- Level of naturalness and immersion enabled today by devices and engines
 - Some of the technological challenges pending to address...

