"GOOD NUMBERS" IN GAME DESIGN

 Alexander King Gireank wisem

AGENDA

"Games are filled with numbers (\& why that might be)
-Numbers have their own distinct aesthetic qualities
-We can make deliberate choices about the numbers in our games (and should do so)

- Some practical examples thereof to use in your own work

6,332.771.800

4	A	B	C	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R	S
1	Rarity	Effect	Notes	Rank 0	Rank 1	Rank 2	Rank 3	Rank 4	Rank 5	Rank 6	Rank 7	Rank 8	Rank 9	Rank 10	Rank 11	Rank 12	Rank 13	Rank 14	Rank
2	Common	Speed	Change these to match	1	1	3	4	7	14	30	68	160	396	1024	2048	4096	8192	16384	327
3	Common	Payout		1	2	3	4	7	14	30	68	160	396	1024	2048	4096	8192	16384	327
4	Epic	Speed	Effect all generators	1	2	4	8	16	32	64	128	256	512	1024	2048	4096	$7 \mathrm{E}+07$	$3 \mathrm{E}+08$	$1 \mathrm{E}+$
5	Epic	Payout	Effect all generators	1	2	4	8	16	32	64	128	256	512	1024	2048	4096	$7 \mathrm{E}+07$	$3 \mathrm{E}+08$	1E+
6	Epic	Discount	Effect all generators	1	2	4	8	16	32	64	128	256	512	1024	2048	4096	$7 \mathrm{E}+07$	$3 \mathrm{E}+08$	$1 \mathrm{E}^{+}$
7	Rare	Click		0	0.4	0.8	1.2	1.6	2	3	4	6	9	13	18	24	31	39	
8	Rare	Payout	1 card per class (moons	1	4	8	16	32	64	128	256	512	1024	2048	4096	8192	$2 \mathrm{E}+06$	$5 \mathrm{E}+06$	$1 \mathrm{E}+$
9	Rare	Payout - Sol	Solar Winds Only	1	4	8	16	32	64	128	256	512	1024	2048	4096	8192	$1 \mathrm{E}+09$	$6 \mathrm{E}+09$	$3 \mathrm{E}+$
$\therefore 10$																			
$\therefore 11$				1	5	25	125	625	3125	15625	78125	390625	$2 \mathrm{E}+06$	$1 \mathrm{E}+07$	$5 \mathrm{E}+07$	$2 \mathrm{E}+08$	$1 \mathrm{E}+09$	$6 \mathrm{E}+09$	$3 \mathrm{E}+$
12																			
13				1	2	4	8	16	32	64	128	256	512	1024	2048	4096	8192	16384	327
14																			

HOW DO YOU PICK SOME COOD NUMBERS TO START WITH?

GOOD NUMBERS

GOOD NUMBERS TO START WITH

GOOD NUMBERS TO START WITH

	A	B	c	D 1	- F	G	H	1	J	K
1	Level Up Rewards Table									
2										
3		Note: "Chapters" here refers to the unit EXP is measured in. It's not the same as literal 'chapters completed' because you get bonus chapters for completing volumes (see tab EXP_ChapterPayoutAmounts)								
4		Note: Player starts at level 1, with FILL unlocked.								
5										
6										
7										
8			Incremental Chapters	Cumulative Chapters					CODE FOR PETER	
9		Player Level	(Chapteres to Reach Thl	(Total Chapters to Reac	Unlocks Puzzle Mode	Unlock Type	Ink Reward			
10		1	0	0	FILL	Puzzle				all.append(LWPlayerRank(rank: 1, xp: 0, rewardType: .MODE, modeUnlocked: .FILL, inkAmount: 0))
11		2	2	2	REARRANGE	Puzzle				all.append(LWPlayerRank(rank: 2 , xp: 2, rewardType: .MODE, modeUnlocked: .REARRANGE, inkAmount: 0))
12		3	3	5	SWAP	Puzzle				all.append(LWPlayerRank(rank: 3 , xp: 5, rewardType: .MODE, modeUnlocked: .WORD_SWAP, inkAmount: 0))
13		4	3	8	SPELLCHECK	Puzzle				all.append(LWPlayerRank(rank: 4, xp: 8, rewardType: .MODE, modeUnlocked: .SPELLCHECK, inkAmount: 0))
14		5	4	12		Ink	4,000			all.append(LWPlayerRank(rank: 5, xp: 12, rewardType: .INK, modeUnlocked: nil, inkAmount: 4000))
15		6	4	16		Ink	2,000			all.append(LWPlayerRank(rank: 6, xp: 16, rewardType: .INK, modeUnlocked: nil, inkAmount: 2000))
16		7	4	20	SEQUENCE	Puzzle				all.append(LWPlayerRank(rank: 7, xp: 20, rewardType: .MODE, modeUnlocked: .SEQUENCE, inkAmount: 0))
17		8	4	24		Ink	750			all.append(LWPlayerRank(rank: 8, xp: 24, rewardType: .INK, modeUnlocked: nil, inkAmount: 750))
18		9	4	28	CROSSOUT	Puzzle				all.append(LWPlayerRank(rank: 9, xp: 28, rewardType: .MODE, modeUnlocked: .CROSSOUT, inkAmount: 0))
19		10	4	32		Ink	500			all.append(LWPlayerRank(rank: 10, xp: 32, rewardType: .INK, modeUnlocked: nil, inkAmount: 500))
20		11	4	36	FILL TWO	Puzzle				all.append(LWPlayerRank(rank: 11, xp: 36, rewardType: .MODE, modeUnlocked: .FILL2, inkAmount: 0))
21		12	6	42		Ink	500			all.append(LWPlayerRank(rank: 12, xp: 42, rewardType: .INK, modeUnlocked: nil, inkAmount: 500))

ALEXANDER KING

NUMBERS IN GAME DESIGN

- Games are full of numbers

Are you using Cindergl
D Fallen Crusader in your MH or you
doing weapon swapping? (essarths ooing weapon swapping? @sarthe
 Foral and i look ovar to our lockt and magos doing 15 k

1128

8 55738 3

5
Cran
4. 1.Psyetiod
4. 2. Sarthegl $52 \pi \mathrm{~K}$ t0.92 Q/3. Protert 47ar Dir 43 4. Inimmud 454K 3.4. (5) 5.5 .5tyind 45 X 9.a E. 8. hamdec 445 KK : 93 KK

NUMBERS IN GAME DESIGN

-Games are full of numbers

Arithmophobia

(2) JOEL GOODWIN (1) SEPTEMBER 14, 20168 MIN READ D 19

Tony Van was the producer in charge of localizing a Japanese RPG called The Story of Thor: Hikari wo Tsugu Mono (Ancient, 1994) for Western audiences, but received a badly translated copy of the story

NUMBERS ARE ABSTRACT REPRESENTATIONS

Ceci n 'est pas une neuf

NUMBERS ARE ABSTRACT REPRESENTATIONS OF MEASUREMENT

- Numbers Getting Bigger

Incremental games are fascinating and perplexing. Marked by minimal player agency and periods of inactivity, they seem to defy conventional logic about good game design, and yet nonetheless have attracted a substantial player base. In this series, we examine them in more detail, and explore why that is.

Posts in this series

Numbers Getting Bigger: What Are Incremental Games, and Why Are They Fun? Incremental games are fascinating and perplexing. Marked by minimal player agency and periods of inactivity, they seem to defy conventional logic about good...

Numbers Getting Bigger: The Design and Math of Incremental Games
Incremental games, despite their simple mechanics and limited player interaction, present interesting challenges to a game designer. We'll examine some core...

Numbers Getting Even Bigger: The Growing Appeal of Incremental Games Incremental games are fascinating and perplexing. Marked by minimal player agency and periods of inactivity, they seem to defy conventional logic about good.

Alexander Kinc
30 Jun 2015
GAME DESIGN
0
Alexander Kinc
3 Sep 2016

NUMBERS IN GAME DESIGN

-Games are full of numbers
-But there aren't a lot of best practices of what those numbers should be
"What are "good" numbers to use in games?

WHAT IS "GOOD"?

-Use-case and genre agnostic - Appropriate for the occasion, "feel right"

- Interesting, have some aesthetic qualities to them
- Easy to produce

WHAT IS "GOOD"?

-So, here are the good numbers!
-Grab a pen.

REGNI
VA1.ENZA
MIHCIA
cas thorde
 Murova Provesheme

VVivy:/iA 17% h ceffo Auforme Zats

A "GOOD NUMBERS" TOOLBOX

-What we really want are methods that produce numbers

- Find yourself some good numbers to start with
- My solution is a spreadsheet tab with interesting progressions

A "GOOD NUMBERS" TOOLBOX

"What we really want are methods that produce numbers

- Find yourself some good numbers to start with
-My solution is a spreadsheet tab with interesting progressions

-When I need good numbers, I "play" around with them till I find a good set

A "GOOD NUMBERS" TOOLBOX

"A 'toolbox' of good numbers let's you reuse what 'feels right' -How to build your own

INTERESTING SETS

- Why are they interesting
- Why are they useful
-What is aesthetically pleasing about them.

1,2,3,4

- Never use a complex solution when the most basic will do
-Simplest series actually has great proportions

ๆ

- 2^{2}
- ${ }^{-3}$

FUNDAMENTAL

2/1

ocatve

FIFTH

FOURTH
MUSICAL HARMONY

$1,2,3,4,5,6 ?$

- Never use a complex solution when the most basic will do
- Simplest series actually has great proportions
-The holy tetractys?
-Limitations of 1-6

1,2,3,4,5,6?

\rightarrow Friedemann Friese, Creating Structures (2018)
\rightarrow Reiner Knizia, Dice Games Properly Explained (1999)

LINEAR SETS

- Linear sets have constant difference -The distance between each term is the same

LINEAR SETS

\mathbf{x}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
$\mathrm{y}=1 \mathrm{x}+0$	1	2	3	4	5	6	7	8	9	10
\# difference		1	1	1	1	1	1	1	1	1
\% difference		100%	50%	33%	25%	20%	17%	14%	13%	11%
Cumulative	1	3	6	10	15	21	28	36	45	55
Current/Total	100%	67%	50%	40%	33%	29%	25%	22%	20%	18%
Diff/Total	0%	33%	17%	10%	7%	5%	4%	3%	2%	2%

LINEAR SETS

- Linear sets have constant difference
-The distance between each term is the same
-Which means the difference is falling proportionally

LINEAR SETS

- Fixed distance is regular and easy to understood (maybe too easy)
- Proportional falloff can be good for making something cheaper/easier over time
- Works great for small sets

3,7,11,15
50,100,150,200
10,20,30,40
9,18,27,36

EXPONENTIAL SETS

"The distance between each term 2,4,8,16,32,64 is increasing
-But the proportional increase is the same

EXPONENTIAL SETS

	\mathbf{x}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
$\mathrm{y}=2^{\wedge} \mathrm{x}$	2	4	8	16	32	64	128	256	512	1,024
\# difference		2	4	8	16	32	64	128	256	512
\% difference		100%	100%	100%	100%	100%	100%	100%	100%	100%
Cumulative	2	6	14	30	62	126	254	510	1,022	2,046
Current/Total	100%	67%	57%	53%	52%	51%	50%	50%	50%	50%
Diff/Total	0%	33%	29%	27%	26%	25%	25%	25%	25%	25%

EXPONENTIAL SETS

EXPONENTIAL SETS

-Being proportionally constant is good for cost treadmills

- Or where the degree of change is more important than the nominal amounts
-Exponential progressions can grow very large very fast though

PROPORTIONAL AND CONSTANT DIFFERENCE

POLYNOMIAL SERIES

-Very versatile, splits the difference between linear and exponential
-The difference between terms rises nominally (like an exponential)
-But the proportional difference decreases (like a linear)

POLYNOMIAL SERIES

\mathbf{x}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
$\mathrm{y}=\mathrm{x}^{\wedge} 2$	1	4	9	16	25	36	49	64	81	100
\# difference		3	5	7	9	11	13	15	17	19
\% difference		300%	125%	78%	56%	44%	36%	31%	27%	23%
Cumulative	1	5	14	30	55	91	140	204	285	385
Current/Total	100%	80%	64%	53%	45%	40%	35%	31%	28%	26%
Diff/Total	0%	60%	36%	23%	16%	12%	9%	7%	6%	5%

POLYNOMIAL SERIES

POLYNOMIAL SERIES

"Polynomial curves have a "just right" steepness for lots of uses
-Have them increasing steepness that linear sets don't, but don't go to the moon like exponentials
-They're also much easier to fine-tune by changing terms than exponentials

TRIANGULAR NUMBERS

- Actually a polynomial
- But, much easier to calculate and makes intuitive sense
- Easy enough to mentally calculate
-The difference between terms is itself just the basic linear series
-So the distance to the next term is always 1 plus whatever the difference to the last one was

TRIANGULAR NUMBERS

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
$f(x)=\mathrm{C}(x+1,2)$	1	3	6	10	15	21	28	36	45	55
\# difference		2	3	4	5	6	7	8	9	10
\% difference	200%	100%	67%	50%	40%	33%	29%	25%	22%	
Cumulative	1	4	10	20	35	56	84	120	165	220
Current/Total	100%	75%	60%	50%	43%	38%	33%	30%	27%	25%
Diff/Total	0%	50%	30%	20%	14%	11%	8%	7%	5%	5%

TRIANGULAR NUMBERS

OTHER INTERESTING SETS

- Figurate \& Polygonal numbers
- 'Triangular numbers’ wider family
- All similar to triangulars, but with different steepness
- Fibonacci series
- Iterative calculation
- But actually a polynomial raising inputs to the golden mean
- Primes
- Great formal qualities proportionally
- All the numbers are sort of ugly though since none are easily divisible
- No known way to produce them

MAKING YOUR OWN GOOD NUMBERS SHEET

- Grab your favorite spreadsheet software
- Populate a spreadsheet tab with useful numbers
- Use as a starting point

main term:	Polynomial	
	2	3
offset:	0	6
index	$f(x)=x^{\wedge} 2+0$	$f(x)=x^{n} 3+6$
1	1	7
2	4	14
3	9	33
4	16	70
5	25	131
6	36	222
7	49	349
8	64	518
9	81	735
10	100	1006

	A \quad	B	C	D	E
1	GOOD NUMBERS Spreadsheet Example from Part 1				
2					
3					
4		Linear		Polynomial	
5	main term:	1	5	2	3
6	offset:	0	0	0	6
7	index	$f(x)=1 x+0$	$f(x)=5 x+0$	$f(x)=x^{\wedge} 2+0$	$f(x)=x^{\wedge} 3+6$
8	1	1	$?$	=(\$A8^\$D\$5)+\$D\$6	7
9	2	2	10	4	14
10	3	3	15	9	33

GOOD NUMBERS

PLAYING AROUND

- This enables you to "play around"
- Play Around is a technical term
- There is no absolute 'best numbers' to use in every case
- Instead you need to rely on your own instincts and taste
- Choosing numbers is an aesthetic choice you are making!
- So make the choice thoughtfully, by playing around

LITERALLYAKING.COM/BLOG

Idea: Aesthetic Qualities of Rounding

You. Why am I looking at this pile of the roofing material?
Perception (Sight): Because it's nice and orderly. Well laid pallet. Easy on the eyes.
Conceptualization: Rhythmic pattern - calms your mind. Mammals like this stuff.

Back in Part 1, I made an assertion you might have felt is unfounded: that numbers themselves have aesthetic properties. This is actually quite a claim I think, and I don't begrudge in the least if at the time you read that and thought, "Sure thing grandpa, let's get you back to bed."

After all, you might feel numbers are mere data, dry vessels of fact, without emotional valence of any kind. Oh, if only that it were so. In fact, that we ascribe cultural connotations to numbers at all, like objectivity, precision, and scientificity, is maybe a clue that they are distinct from, say, the universal constants of physics.

The truth is, numbers are actually quite peculiar. You might think numbers are simple because you learned to count when you were very young, but how our minds perceive and work with numbers is extremely complex and poorly understood. Numbers are like words, though also obviously distinct from them in some way (and evolutionarily, numeracy almost certainly predates language, as number sense can be observed in certain animals). But in the same way that words can be carefully chosen for their own sake, so it is with numbers.

Distribution of numerals in text. from On Round Numbers: Pragmatic Aspects of Numerical Expressions by Jansen \& Pollmann (2010)
(or $2 \sqrt{3}$) 3,464101615137754587054892683011744733885610507620761256111613958903866034 $9 \times 5) 2 \sqrt{3}(76980 c 35891950101934553170733594327419680233502683583469146976864530356$ $9 \times 9 \times g) 2 \sqrt{3}(4751854067444327279910689551456439964177792191523677991922652892872244$ $\left.9^{3} \times 13\right) 2 \sqrt{3}(\quad 365527235954179021531591503958187689552137860886436768609434837913250$ $\left.9^{4} x 17\right) 2 \sqrt{3}(, \quad 31057869721596910326213657199061699112273151578586130666161130018773$ $\left.9^{\prime} x 21\right) 2 \sqrt{3}(2793565001413478706590646414730417380469013634052720747749942911741$ $\left.9^{6} x \quad 25\right) 2 \sqrt{3}(, \quad 26<732733465258012615126938708172288843774605844920603123328005096$ $\left.9^{7} x 29\right) 2 \sqrt{3}(24974399757208621898000670374346004678522471824226111410280460258$ $\left.9^{8} x_{33}\right) 2 \sqrt{3}\left(\quad 24385777540708755388620183193^{805} 863_{1} 5411285127618037814471829453\right.$ $\left.9^{9} \times 37\right) 2 \sqrt{3}(, \quad 241660858511528206553893707326004049274992219854039783416127243$ $\left.9^{10} x_{41}\right) 2 \sqrt{3}(\quad 24231576598716920440363325666835094371747187356638135464489724$ $\left.9^{1+1} x_{45}\right) 2 \sqrt{3}(, 2453073186536774661863941610716639183312678226227564330973034$ $\left.9^{12} x 49\right) 2 \sqrt{3}\left(\quad 25031359046293^{618} 89986116490889452977889048798594649421527861\right.$ $\left.9^{13} \times 53\right) 2 \sqrt{3}(\quad 25713555414431600229181777890111521837659100903852875586719$ $\left.9^{14} x 57\right) 2 y^{\prime} 3\left(, \quad 2656{ }^{\prime} 566153927631212761470230362398942292265785388308783813\right.$ $\left.9^{15} x 61\right) 2 \sqrt{3}(275818343850409798046272865447462185265317212690589436571$ $9^{16 x 65)} 2 \sqrt{3}(-28760545256196577232175461183410586839631367477138385694$ $9^{17 x 69) 2 \sqrt{3}(3010363030036678776314661798585649186: 12784035449267423}$ $\left.9^{18} x 73\right) 2 \sqrt{3(} \quad 316156847903395487923457631814931193662073269202434478$ $9^{19 x 77) 2 \sqrt{3}(333 n 3679504975282277651381129134166080131809915985161}$ $\left.9^{20} \times 81\right) 2 \sqrt{3}(\quad 3517672595175715686391160669743937981029011472607486$ $\left.9^{21} \times 85\right) 2 \sqrt{3}(\quad 372459451253899307970828808561122845050130626511381$ $\left.9^{2} 2 x 89\right) 2 \sqrt{3}(\quad 395244111817496144538332693229.65595252460803063005$ $\left.9^{23} \times 93\right) 2 \sqrt{3}(42027151674739733409691289961$ C 9842271241351819125 $\left.9^{24} x 97\right) 2 v 3(, 447711925057364857629013741853625808963855348429$ $\left.9^{25} \times 101\right) ? \sqrt{3}(\quad 47775639967617592068222588514633337150158381515$ 3.546233172182121682168891206883372605845662892593992630286006837033135867

YOUR DAYS ARE NUMBERED

- The numbers you use, for anything, are never neutral or natural
\rightarrow Numbers have intrinsic and extrinsic qualities
\Rightarrow Be thoughtful in what you pick

YOUR DAYS ARE NUMBERED

- The numbers you use, for anything, are never neutral or natural
\Rightarrow Numbers have intrinsic and extrinsic qualities
\Rightarrow Be thoughtful in what you pick
- If comedians can do it, then so can we!

"GOOD NUMBERS" IN GAME DESICN

Alexander King-
@LiterallyAKing (Twitter and Cohost)
LiterallyAKing:com

