
Hi, everyone. Welcome to this talk – Picking A Good Spot: 
Naughty Dog’s Post System.



My name is Allen Chou. I’m a senior game programmer at Naughty 
Dog.

I’ve been a longtime Naughty Dog fan, and I had the honor of 
working on the last 4 Naughty Dog games: Uncharted 4, 
Uncharted: The Lost Legacy, The Last of Us Part II, and The Last 
of Us Part I. Note that The Last of Us Part I is a remake of the 
original Last of Us, so it’s ordered after Part II.



Here’s a shout-out to current and former dogs on who contributed to 
the post system discussed in this talk.



Picking a good spot is a very common gameplay problem.

At Naughty Dog, we’ve encountered this problem the most 
frequently in AI, specifically where an NPC should go, so that will 
be the focus of this talk.

But the same principles can be applied to anywhere in gameplay.

In this talk, I will go over the evolution of our problem space and 
solutions in our recent games.



First, let’s look at a video of an NPC shooting at the player. 
When the player breaks line of sight, the NPC will try to 
reestablish line of sight in order to shoot at the player.



Now, let’s look at an NPC investigating a thrown bottle. They 
perform multiple corner checks around the broken bottle.



Before picking a good spot for an NPC to go to, we need to 
first determine where those spots are.



At Naughty Dog, we call them posts.

Posts can be tool-generated, manually placed in tools, or 
dynamically generated at load-time or run-time.

We try not to generate too many posts at run-time for 
performance reasons. We used to generate most posts at 
load-time and has since transitioned to generating them at 
tools-time.

We call our system the Post System.

If you’ve used Unreal, you might be familiar with Unreal’s
Environment Query System (a.k.a. EQS). The purposes of 
both systems are very similar.

A quick shout-out to Matthew Jack’s article in Game AI Pro, 
Tactical Position Selection: An Architecture and Query 
Language. I inherited our post system and wasn’t fully aware 
of its origins. I was made aware of Matthew’s article by David 



Rogers from PlayStation London Studio only just two days ago, and 
it appears that some of the core ideas and terminologies from our 
system most likely originated from the article. So I added this 
acknowledgement just in time, whew.



Here are a few examples of types of posts generated from 
tools: open, cover, hang, and perch.

These posts are generated from nav data or hand-placed 
markups at tools-time.

Here AP stands for action packs. They are generated from 
level collision or markups placed by designers in tools.



Nav meshes are our main source of post generation. Let’s take 
a deeper look.

Open posts are generated at grid points that lie on nav 
meshes.

Since this happens at tools-time, we didn’t use any fancy 
optimization and simply used a straightforward 
implementation.

For each nav mesh, iterate over all the grid points contained 
by its AABB. If a grid point is contained by a nav poly, then a 
post is generated there.



As mentioned before, posts can also be dynamically generated 
at run-time. Here we can see posts generated around the 
player for buddies to go to.



NOTE: the tiny debug draw text in screenshots are not meant 
to be read, so there’s no need to squint your eyes.

Here I just need you to pay attention to the position of the 
blue text. That is the post the NPC has chosen to go to.

But how do we pick a good post for NPCs to go to?



We use post ratings.

Each post is scored using a list of post criteria. Each criterion 
produces a normalized score between 0 and 1. Then each 
score is multiplied together to produce a final score.

If a post gets a zero score, then it is rejected. The post with 
the highest score is chosen.



Here are some commonly-used criteria for scoring posts.

The most common one in our games is the linear distance. It 
can be the distance to targets, allies, players, distractions, or 
whatever points of interest.

Then we have path distance, or the path length, which is 
different from linear distance. For example, the target might 
be right on the other side of a fence an NPC with a gun can 
easily shoot at, but an NPC with a melee weapon might have 
to take a long path around to get to the target.

The visibility is useful for preferring posts that have line-of-
sight to the target to shoot at the target.

Time since last exposed is useful for investigation or search, 
so NPCs prefer not to expose a recently-exposed area again.



We group different lists of criteria into post selectors.

Here is how we define a post selector mapping and each post 
selector’s list of criteria in scripts.

Here we use the combat cover post selector as an example. It 
only considers cover posts and rates posts based on visibility, 
distance compared to weapon range, path distance from NPC, 
whether path leading to posts go anywhere near the player, 
and distance from the target. The curves for each criterion 
map values to normalized scores between 0 and 1.



Here’s a very straightforward brute-force implementation of 
picking the best-rated post. We loop over all posts. For each 
post, we loop over all criteria and score the post with it.

I know here the code says AddScore, but what it really does it 
multiplying the scores.

If we don’t have a lot of total posts or complicated criteria, 
then this approach would work.

Based on word of mouth in the company, this is how it was 
done in the very first Uncharted, which was before my time at 
the studio. This was good enough, because in Uncharted the 
NPCs only needed to score cover posts, and there weren’t that 
many cover posts in each encounter; also, the scoring rules 
were very simple and weren’t expensive to compute.

But we do have a lot of posts and non-trivial criteria in later 



games, so optimization is needed.



The first obvious and easy thing to do is early-out.

We order the criteria by how expensive they are. Then we 
early-out on the first criterion evaluation that gives the post a 
zero score and reject the post.



Before looking at more advanced optimization, let’s first look 
at some rating examples.

Here we want the NPC to find a good open post to stand his 
ground.



The criteria we used include preferring shorter path distances 
from the NPC to the post, as well as preferring posts within 
weapon range (there’s a maximum distance and a minimum 
distance so the NPC doesn’t end up at ridiculous distance unfit 
for their weapon). Here you can see the ratings are color-
coded. Greener ratings mean higher scores, and redder 
ratings mean lower scores.



Next, here’s an example of an NPC picking a post to expose 
the player behind the cover to establish line of sight for 
shooting.



We are not showing ratings here but intermedia ray cast 
results used for rating posts based on visibility.

Green posts mean they provide line of sight to expose and 
shoot the player.

Since ray casts are not cheap, we don’t perform them 
synchronously during post rating. Instead, we first request the 
necessary raycasts for posts, time-slice the raycasts over 
multiple frames, cache results for a short while, and evaluate 
raycast-based criteria once results for all raycasts are cached. 
Multiple NPCs can share and reuse the post raycast results.



Let’s talk more about post raycast result caching.

We represent a set of posts as a bit array. If bit number 3 is 
set, post number 3 is in the set. We support up to 8K posts in 
The Last of Us; that is 128 64-bit integers in each bit array. 
Far from a performance bottleneck.

Every time a batch of raycast result returns, we cache a result 
entry consisted of 2 bit arrays: one representing the set of 
posts being requested for raycasts, and one representing the 
binary raycast result (hit or clear).

When querying a raycast result, we go through the cache 
entries that have not expired and bitwise-OR their post bits 
together, until either 1) the bitwise-OR becomes a superset of 
the requested post bits, meaning a cache hit, or 2) the cache 
entries have been exhausted, meaning a cache miss.



Upon a cache miss, we request raycasts for post bits equal to the 
needed post bits minus the bitwise-OR of post bits from the cached 
results that would still be valid later.



The third example is the video we saw earlier. This NPC 
investigates a thrown bottle.

The initial post needs to be a cover post near the throw bottle, 
and the cover must have line of sight to the bottle.

The subsequent post doesn’t have the line-of-sight 
requirement but is biased towards corners that haven’t been 
seen by any NPCs in a while, and it has to be a minimum 
distance away from the first post.

These two post selectors make the NPC perform two corner 
checks in quick succession, the first one uncovering the bottle, 
and the second one making them uncover additional corners 
nearby that haven’t been checked in a while.



Now that’s go back to optimization.

We still haven’t solved the problem with lots of posts.

Here is an NPC trying to see if there’s a better combat post 
than the current one.



Here are all the posts in the area. There are a lot of posts that 
are valid combat posts, but they are too far away from the 
NPC and player, so they can be reasonably ignored.



We optimize by cutting down the total numbers passed down 
to rating using collection volumes. Each post selector can 
specify one or more collection volumes. Only posts within at 
least one collection volume will be passed further down for 
rating. Here we collect posts within a sphere around the NPC 
and a smaller sphere around the player.



Here you can see part of an updated combat cover post 
selector that specifies 3 collection volumes, the weapon range 
volume is a torus corresponding to the minimum and 
maximum weapon range, the self-tight volume is a small 
sphere around the NPC themselves, and the target-tight 
volume is an even small sphere around the NPC’s target.

We now collect posts within collection volumes before rating 
them using the same logic as before.



And here’s the collection function. We loop through all posts 
within a post set and check if each post is contained by any 
collection volume.

It is an improvement from before, but there is still something 
brute-force about this implementation. The post set being 
iterated over for the volume containment test is still all the 
posts.



We want to avoid any kind of iteration over every single post, 
so we decided to use spatial data structures to help eliminate 
that.



First, we tried spatial hash. Each post is hashed to a key that 
is its quantized coordinates, essentially hashing posts 
contained within the same grid cell to the same bucket.



This is a debug draw for the grid cells. You can see each cell 
contains 2 to 3 posts in each axis.

This is the solution we shipped in Uncharted 4, Uncharted: The 
Lost Legacy, and The Last of Us Part II.



Here’s our updated post collection using spatial hash. There is 
no longer a need to pass in a post set containing all the posts. 
It is now generated from the spatial hash.

We iterate over each volume, iterate over each grid cell 
touched by the volume’s AABB, and the posts contained in the 
grid cells that intersect with the AABB of the volume to a post 
set. We then loop through this post set to perform the same 
volume containment test as before. You might get better 
performance by testing each cell with the volume as well, but 
I think that depends on the use case.

Now we no longer iterate through all posts. Just the ones that 
are within the grid cells near collection volumes.

This had been our implementation throughout The Last of Us, 
Uncharted 4, and The Last of Us Part II.

But can we do better? If the collection volumes are large, we 
can still collect hundreds, if not thousands, of posts, and we’d 
have to check their types against the selector’s filter and rate 
every single one of them.



As programmers, when we are faced with linear complexity, 
the next natural thing to ask is if it’s possible to make it 
logarithmic.
Can we reduce the complexity of post collection and 
evaluation from linear to logarithmic?

The answer is yes! By using bounding volume hierarchies.



The structure we chose is AABB tree.

Each node’s AABB is the union of its children’s AABBs.



Here you can see a nice little patch of posts.



And here is its corresponding AABB tree. Each node is given a 
thickness and offset vertically for visualization.

There are many other tree-based spatial data structures. We 
picked AABB tree because it lends itself well to arbitrarily large 
spatial coverage with finite node sizes, as well as dynamic 
node insertion and deletion. It’s also easy to provide custom 
cost heuristics on how to split nodes.

Our AABB tree implementation is based on a talk by Erin Catto 
in GDC 2019 
(https://box2d.org/files/ErinCatto_DynamicBVH_GDC2019.pdf
). A cost heuristic is picked so that minimizing the cost of the 
entire tree during insertion and removal would result in good 
average query cost, much like the idea of balancing a binary 
search tree. But we are not balancing the tree height. We are 
balancing the average query cost. For example, in Erin Catto’s 
talk, his primary use case was ray casting against the AABB 
tree for Overwatch, so he used the surface area of each node 
as the cost. This is good for ray casting, but not so great for 



collection volumes, because extremely elongated AABBs can have 
the same surface area as a mostly cube AABB. So our cost heuristic 
is chosen, through trial & error, to be the AABB’s surface area plus a 
bias term that is the extent sum to the power of 8. This seems to 
nicely discourage elongated nodes.

In this implementation, the trees are always full, so the total 
number of internal nodes is total number of posts minus one. Posts 
are leaf nodes, so the total number of nodes is total number of 
posts times two minus one.



This is what our new collection function looks like. We first 
start with visiting the root node. And then we recursively visit 
each node’s children if the node’s AABB intersects with the 
collection volume.

Then we asked ourselves if we can make the pruning of tree 
traversal even more aggressive.

For example, if we propagate a bitwise-OR’d bitmask up the 
tree from the leaf nodes that indicates what types of posts an 
internal node contains, we can early-out on an internal node 
that doesn’t contain any cover posts if we want to collect 
cover posts.

Also, nearby posts might have similar properties and are likely 
to be within the same ancestor node. We should be able to 
reject them as a whole if we can make sure that that they will 
all be rejected by a certain criterion.



Here we have a little collection sphere volume. Only the nodes 
whose AABBs intersect with the sphere are drawn. Remember 
that nodes are vertically offset for visualization.

This is the solution we shipped in The Last of Us Part I.



Let’s look at the code again.

Here is where we prune visited nodes during collection.

Then we asked ourselves if we can make the pruning of tree 
traversal even more aggressive.



As it turns out, it’s not too hard to come up corresponding 
algorithms for some criteria that work on internal AABB tree 
nodes.

We call them broad phases. This is a term borrowed from 
physics engines for logic that rejects groups of objects as a 
whole before processing individual objects.

We test internal nodes against broad phases and potentially 
reject them before visiting their children.



Here are some examples of post criteria and their 
corresponding broad phases.

Binary checks on internal nodes are done in the same way as 
post type checks shown earlier, by propagating bitwise-OR’d
flags from leaf nodes.



Let’s look at a broad phase example where we want to collect 
posts that are not near the player.



The pink numbered crosses are posts rejected due to the 
distance check broad phase. The red “TADI fail” texts mark 
internal nodes rejected by the broad phase.

We are rejecting posts within a certain distance of the player, 
so the corresponding broad phase is rejecting internal nodes 
whose furthest point within the node’s AABB is still within that 
distance of the player.

There are a total of 26 posts rejected, and that’s a result of 
rejecting just 9 internal nodes. We not only skipped the 
distance evaluation for these posts, but we also skipped all the 
cheaper criteria that would have been evaluated before the 
distance criterion if we had collected all these posts.



The second example is collecting posts that are not behind 
player, i.e., rejecting posts behind the player.



Again, the pink numbered crosses are rejected nodes, and the 
red “NBTG fail” texts mark internal nodes rejected by the 
broad phase.

We are rejecting posts behind the player, so the corresponding 
broad phase is rejecting internal nodes entirely behind the 
player.
● There are a total of 82 posts rejected, and that’s the 

result of rejecting just 17 internal nodes.
● Overall, switching from spatial hash over to AABB tree 

gave us a performance boost of cutting CPU time in half!



After looking at all the various methods of post collection, let’s 
look at their performance stats.

We profiled the advance selector to advance NPCs towards the 
player, with a total of 4458 posts in the level. This is running 
on a PS5.

The brute-force approach iterated through and evaluated 
every single post; it took 6.72ms.

Spatial hash significantly cut down the number of posts down 
to 182; the evaluation took 0.49ms, about a 93% reduction 
from brute-force.

AABB tree without broad phase further reduced the collected 
posts to 141; the evaluation took 0.25ms, further reducing the 
CPU time by almost half.

Finally, AABB tree with broad phases (for player distance, not 
behind player, and not behind NPC) further cut down the 
number of posts by more than half, reducing the time by 



another 20%.

There could be use cases where spatial hash is more efficient than 
AABB trees, but in our tests AABB trees proved to be performing 
better.



This presentation mostly focused on the AI applications of 
posts, since those were our initial use cases. But as mentioned 
at the beginning, and like Unreal’s EQS, it doesn’t have to be 
limited to AI applications. Any problem that requires picking of 
good spots can take advantage of posts. For example, in 
Unchrated 4 multiplayer, we used post selectors to choose 
where to spawn minions during boss fights. Also in a 
multiplayer setting, we can potentially use posts to pick a 
good spot around a player to respawn a teammate that is both 
away from threats and outside of any player’s view.



Finally, a little discussion of our future research on posts.

We have announced our next project to be a multiplayer 
game, and we are aiming for much larger levels.

We expanded our max number of posts from 8K to hundreds 
of thousands of posts, and the bit array approach quickly 
proved to not scale up well. Suddenly the bitwise operations 
became a performance bottleneck. This was also due to the 
fact that we have more NPCs. More NPCs mean more post 
evaluation and post raycast requests.

We have removed the number of max posts from being a 
performance bottleneck by implementing sparse bit arrays, 
which are maps of nav mesh IDs to local post bit arrays. There 
are no more global post sets that are huge bit arrays that 
account for all posts. The downside is that now each post set 
has a limit on the number of local post bit arrays it can 
contain, but that hasn’t become a problem for us yet. We can 



always pick a safe number as our limit for each use case. For 
example, a post set capable of containing 32 local post bit arrays is 
more than enough for collecting posts in volumes that can hardly 
span 8 nav meshes.

We left out a tiny detail from our AABB tree-based post collection. 
There actually isn’t a master post tree. Instead, each nav mesh has 
its own local post tree. Each nav mesh is inserted into a master nav 
mesh tree. We query this nav mesh tree first, and then query the 
post trees of the collected nav meshes. We are researching if 
actively adding removing nav mesh tree nodes can improve 
performance by reducing the query time on the nav mesh tree. We 
support more than 5K nav meshes, so if the players are only ever 
near less than a hundred nav meshes, the reduction in tree size 
might worth the extra overhead of monitoring player proximity to 
nav meshes and tree manipulation.

We have not looked into this yet, but we might be able to find a 
more efficient way to cache post raycast results now that the 
underlying post set representation has changed significantly.



Here’s the summary of what we just went over:

- How we can generate posts at tools-time, load-time, and 
run-time.

- The evolution and optimizations of our post system from the 
brute-force approach to AABB trees with broad phases

- How we cache raycast results and how we use post sets to 
look for cache hits.

- Our post sets initially represented by dense sparse bit 
arrays and now sparse bit arrays.



This is the end of the talk. I hope you find it useful.

We are hiring. If you are interested, please visit our website.

The bottom left are my website and Twitter handle.

Thank you all very much for coming.




	Slide 1: Picking A Good Spot: Naughty Dog’s Post System
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

