
Using Vertices over Pixels:
Achieving Cartoon Graphics on
Standalone VR
Stefan Hell
Lead Programmer

Using Vertices Over Pixels: Achieving Cartoon Graphics on
Standalone VR

Using Vertices Over Pixels

❖ Introduction

❖ Research

❖ Implementation

❖ Conclusion

Introduction

Sweet Surrender

https://docs.google.com/file/d/1g1HvXcR0ywe0J3PZRW6pTJAvfITHr0wC/preview

Target Visual Look

❖ Cartoon Graphics

❖ Sharp inlines and outline

❖ Run on mobile hardware

Our Solution

http://www.youtube.com/watch?v=_BELt-axEzE

Our Solution

❖ Stack multiple meshes

❖ Create gaps that form inlines and outlines

❖ Offline geometry calculations
+ Runtime vertex shader calculations

Research

Developing for Quest 1

❖ ~75 draw calls per eye

❖ ~250k Vertices per eye

❖ Resolution of 1440 x 1600 = 2,304,000 pixels per eye

❖ No Post Processing effects

❖ No Depth Pass

https://developer.oculus.com/blog/pc-rendering-techniques-to-avoid-when-developing-for-mobile-vr/

https://developer.oculus.com/blog/pc-rendering-techniques-to-avoid-when-developing-for-mobile-vr/

Existing Solutions

❖ Post Processing

❖ High Detail Texture

❖ Inverted Hull

Post-Processing Outlines

High-Detail Textures

Inverted Hull

Implementation

Implementation

❖ Offline Mesh Baking Tool

❖ Vertex Shader

❖ Pixel Shader

The pipeline

Mesh Preparation - Step by Step

Mesh Structure

❖ Vertex List

➢ Position (Vector3)

➢ Normal (Vector3)

➢ UV (Vector2)

➢ Tangent (Vector4)

❖ Triangle List

Color Palette

Original Mesh

Offline Mesh Baking Tool

❖ Outline Mesh

❖ Face Mesh

❖ Inline Mesh

Outline Mesh

Outline Mesh

❖ Group all normal vectors by position

Outline Mesh

❖ Group all normal vectors by position

❖ Combine them into one normal

Outline Mesh

❖ Group all normals by position

❖ Combine them into one normal

❖ Fit the length of the combined normal to the
length of the green normals

Outline Mesh

❖ Group all normals by position

❖ Combine them into one normal

❖ Fit the length of the combined normal to the
length of the green normals

❖ Flip triangle faces by changing the triangle
order, e.g. (0,1,2) -> (0,2,1)

Outline Mesh

❖ Group all normals by position

❖ Combine them into one normal

❖ Fit the length of the combined normal to the
length of the green normals

❖ Flip triangle faces by changing the triangle
order, e.g. (0,1,2) -> (0,2,1)

Outline Mesh

❖ Group all normals by position

❖ Combine them into one normal

❖ Fit the length of the combined normal to the
length of the green normals

❖ Flip triangle faces by changing the triangle
order, e.g. (0,1,2) -> (0,2,1)

Outline Mesh

❖ Group all normals by position

❖ Combine them into one normal

❖ Fit the length of the combined normal to the
length of the green normals

❖ Flip triangle faces by changing the triangle
order, e.g. (0,1,2) -> (0,2,1)

Outline Mesh

Outline Mesh + Default Mesh

Face Mesh

Face Mesh

Step 1: Detect All Edges

❖ Iterate over all triangles

Step 1: Detect All Edges

❖ Iterate over all triangles

❖ Create a list of all lines (storing position A, B
and normal A)

Step 1: Detect All Edges

❖ Iterate over all triangles

❖ Create a list of all lines (storing position A, B
and normal A)

❖ Lines sharing position and normal with
another line have smooth edges

❖ All other lines are hard edges

Step 2: Define Inward Vector

❖ Iterate over all hard edges (△ABC)

Step 2: Define Inward Vector

❖ Iterate over all hard edges (△ABC)

❖ Form vectors AB, AC

Step 2: Define Inward Vector

❖ Iterate over all hard edges (△ABC)

❖ Form vectors AB, AC

❖ Take cross-product (AB)x(AC)

Step 2: Define Inward Vector

❖ Iterate over all hard edges (△ABC)

❖ Form vectors AB, AC

❖ Take cross-product (AB)x(AC) = AD’

❖ Take cross-product (AD’)x(AB)

Step 3: Combine Inward Vectors

❖ Iterate over all vertices

Step 3: Combine Inward Vectors

❖ Iterate over all vertices

❖ Select all inwards vectors

Step 3: Combine Inward Vectors

❖ Iterate over all vertices

❖ Select all inwards vectors

❖ Combine vectors

Step 3: Combine Inward Vectors

❖ Iterate over all vertices

❖ Select all inwards vectors

❖ Combine vectors

❖ Fit length of combined normal to length of
the inwards vectors

Face Mesh

Face Mesh + Outline Mesh

Face Mesh + Outline Mesh

Inline Mesh

❖ Similar to Outline Mesh but

➢ Displacement vector is inverted

➢ Triangles are not inverted

Face + Outline Mesh

Face + Outline + Inline Mesh

Insetting the hull

❖ Outline mesh can clip into floor

❖ Inset the color mesh and inline mesh instead

Insetting the hull

❖ Go over all outline vertices

➢ Subtract the displacement vectors from all vertices at the same position

Combine Meshes

❖ 1 Draw call instead of 3

❖ Vertex count

➢ Original 962

➢ Color 962

➢ Outline + 326

➢ Inline + 326

➢ Final = 1614

Recap

Recap - Face Mesh

Recap - Face + Outline Mesh

Recap - Face + Outline + Inline Mesh

Recap - Face + Outline + Inline Mesh (Inset)

Vertex Shader

Vertex Shader

❖ Executed once for each vertex

❖ Calculates the line width

❖ Moves position along displacement vector

❖ Applies colors to face mesh and edge meshes

Color Mesh, Inline Mesh or Outline Mesh?

half alpha = IN.tangent.w;

half edgeVal = 1 - step(alpha, 0.6); // is 1 if it is an outline or inline

half outlineVal = 1 - step(alpha, 0.9); // is 1 if it is an outline

half inlineVal = edgeVal - outlineVal; // is 1 if it is an inline

Vertex Shader - Calculating Color

half4 baseColor = SAMPLE_TEXTURE2D_LOD(_BaseMap, sampler_BaseMap, IN.uv, 0);

baseColor = lerp(baseColor, _OutlineColor, edgeVal);

float3 worldPosition = TransformObjectToWorld(IN.pos);

float3 displacementNormal = TransformObjectToWorldNormalScaled(IN.tangent.xyz);

Object -> World Space

half lineWidth = min(distanceToCamera * _LineWidth, maxLineWidth);

worldPosition = worldPosition + lineWidth * displacementNormal;

// translate the world position (after being changed in world space) to clip space

OUT.positionHCS = TransformObjectToHClip(TransformWorldToObject(worldPosition));

Displacing the vertex

Z-Fighting

float4 zFightingOffset = inlineVal * float4(outlineScreenOffset, 0) * distanceToCamera;

zFightingOffset -= outlineVal * _OutlineOnlyZFightingOffset

OUT.positionHCS += zFightingOffset;

Pixel Shader

half4 frag(Varyings IN) : SV_Target

{

 return IN.color;

}

Conclusion

Advantages

❖ Sharp lines at any distance from camera

❖ Leverages MSAA Antialiasing

❖ Supports batching

❖ Low artistic effort

❖ Modify effects on a per-object basis

Disadvantages

❖ Increases vertex count ~65 %

❖ Cannot have outlines on intersecting model parts

❖ Potential issues with very thin geometry parts

Takeaways

❖ Timeless visual look within the limits of the hardware

❖ No Post Processing

❖ Realizable with limited art budget

Questions

Thank you for your attention

