
AT GDC2023

MEET
LIGHTSPEED STUDIOS
March 20-24, 2023 | San Francisco, CA

1

Senior Game Engine Developer, LIGHTSPEED STUDIOS

‘Wobbledoll’
ML Powered Self-balancing Synthesis Ragdoll

March 20-24, 2023 | San Francisco, CA

Hello everyone, this is Nan Ma, I’m senior game engine developer
from Lightspeed Studios. It is great pleasure to present the
Wobbledoll system to you, which is the smart self-balancing ragdoll
that’s powered by the machine learning.

2

LIGHTSPEED STUDIOS: A Leading Global Game Developer

LIGHTSPEED STUDIOS is a leading global game developer, with teams across China, United States, Singapore,

Canada, United Kingdom, France, Japan, South Korea, New Zealand and United Arab Emirates.

LIGHTSPEED STUDIOS has created over 50 games across multiple platforms and genres for more than 4 billion

registered users. It is the co-developer of worldwide hit PUBG MOBILE(co-developed with KRAFTON, Inc.).

LIGHTSPEED STUDIOS is made up of passionate players who advance the art & science of game development

through great stories, great gameplay, and advanced technology. We are focused on bringing next generation

experiences to gamers who want to enjoy them anywhere, anytime, across multiple genres and devices.

Just a bit background information about Lightspeed Studios for
people haven’t heard about us.

Lightspeed Studios is a leading global game developer, with teams
across all over the world. And myself from the Canada team.

Our studio has created over 50 games across multiple platforms and
genres. One of the game you guys probably know is the PUBG
Mobile

3

‘Wobbledoll’

It’s simply a smart ragdoll

It can perform given motions in the simulated environment

And maintain its balance as much as possible

1

Alright back to our topic, what is the Wobbledoll. It’s basically an
advance ragdoll that able to perform given actions while maintain
the balance.
To get better understanding, let’s take a look at a few Wobbledoll
demo videos

4

Wobbledoll Performs Given Action2

This video shows a Wobbledoll character climbing along the
ropes. The yellow debug skeleton reveals the underlying
animation the character is following. As you can see, the
Wobbledoll character is able to perform a realistic rope
climbing motion, interacting with the ball impacts and
swinging with the rope. The motion looks natural and
grounded, just as it should be in real life.

5

Maintain Self-balance3

Here in this demo, we have a Wobbledoll character walking up and down
stairs. The Wobbledoll balancer is capable of handling complicated terrain
such as stairs and slopes. You can see that the character’s foot slips down a
stair occasionally, but it is still able to maintain its balance in those cases.

6

And Handle Physical Impacts4

This demo video here showcases how Wobbledoll system able to
handle physical impact and still remain balanced. Each ball weights
10kg and launches at 20m/s. The Wobbledoll character is able to
survive from such large impacts while standing still or in motion.

7

Agenda

Simulation & Control

RL Overview

Related Research Papers

Training Wobbledoll

Wobbledoll at Runtime

Limitation & Future Work

Simulation & Control

5

In today's talk, I would like to take this opportunity to walk you
through the journey of how we are utilizing ML to build our physical
interaction system, called Wobbledoll.

Here’s an agenda for all the topics I’d like to cover.

First thing I’d like to talk about is the simulation and control

8

This is Where We Started With6

This video demonstrates the physical animation system
offered by the Unreal Engine. As you can see, when the
simulation is activated, the body parts appear to be
somewhat out of control, especially when they receive
impacts. In some extreme cases, the body parts briefly
become disconnected from each other.

Another issue is that the character's root must always be
anchored to the world coordinate, or else it will collapse.

9

Many Challenges Need to be Resolved

● Unstable simulation

● Motor control feels weak & flimsy

● No full body active ragdoll supported

● Ragdoll cannot balance itsef

7

Here's a summary of the challenges that need to be
resolved. Most of these issues have already been covered in
the previous video. The question is: where do we get
started?

10

Pros:
• Resolve articulated body as whole
• Better dynamic stability
• No joint separations
Cons:
• Expensive to simulate, O(n*m) for n joint and m

constraints

http://royfeatherstone.org/spatial/v2/

Pros:
• Fast converge, no overshooting, therefore more

stable
• No constraint violation
• No computational overhead
Cons:
• None

http://www.jie-tan.net/project/spd.pdf

Improving Simulation & Control

AB Solver (Featherstone) Stable PD controller

8

We started by improving the simulation and controls, which
are the fundamentals of the physical animation system.

We implemented Featherstone's articulated body algorithm,
called ABSolver, for ragdoll simulation

And built a stable PD controller for ragdoll controlling.

The main difference between ABSolver and conventional
constraint solvers is that the ABSolver solves articulated
bodies as whole, rather than as set of independent
constraints. The result is much more stable and accurate.
Though it does come with additional performance cost.

The stable PD controller, on the other hand, computes the

11

control forces using the predicted state of the next time step,
thus converging much faster than the traditional PD
controller. Furthermore, it can be seamlessly integrated into
the AB Solver with no additional performance overhead.

11

Now, the Movement Looks Much Better9

Let's take a look at how the Ragdoll movement performs
with the new simulation and control schemes. It looks much
smoother and natural, doesn't it?

The black lines show the underlined target animation.

The impact reaction looks incredibly realistic as well.

12

Well, When Placing Them on the Ground…10

Ok, what if we place these characters on the ground?

This is because they have no idea how to maintain the
balance.

13

Agenda

Simulation & Control

RL Framework

Related Research Papers

Training Wobbledoll

Wobbledoll at Runtime

Limitation & Future Work

RL Overview

11

Alright, before diving into the complexities of ragdoll
balancing, we need to have some basic understanding of
reinforcement learning.

Let’s start with covering some basics.

14

RL Overview12

𝜋 (𝑎|𝑠)

Markov-Decision ProcessPolicy 𝜋 is prob of taking action a given
state s, where 𝜃 is policy params

This is the basic reinforcement learning process, the Markov
Decision Process, which describes how the basic workflow
looks like.

It consists of a few key elements:

Agent is a policy network that we are training to make
good decisions. We use to represent the policy, and to
represent policy parameters

Environment is a dynamic model that agent interacts
with.

States define the current situation of the agent within

15

the environment, which used by the agent as input.

Action is the decision an agent makes at given states and
policy, which will change how the agent interacts with the
environment.

Rewards evaluate how well the agent performs, and they
are used to train the policy network.

15

RL Overview12

𝜋 (𝑎|𝑠)

Train the policy to inc prob of making good act

Goal: Maximize expected reward
𝑚𝑎𝑥

𝜃
𝐸𝑥𝑝 𝐴𝑐𝑐𝑢𝑚𝑅𝑒𝑤𝑎𝑟𝑑|𝑃𝑜𝑙𝑖𝑐𝑦𝑃𝑟𝑜𝑏

Markov-Decision ProcessPolicy 𝜋 is prob of taking action a given
state s, where 𝜃 is policy params

The most efficient way?

Follow the policy gradient
𝜃 = 𝜃 + 𝐿𝑒𝑎𝑟𝑛𝑅𝑎𝑡𝑒 ∗ 𝑃𝑜𝑙𝑖𝑐𝑦𝐺𝑟𝑎𝑑

Basically, the whole point of RL is to train the policy to
increase the probability of making good actions.

This can be represented as maximizing the expected reward,
which is the weighted average of sum of rewards for all
possible actions that policy can produce.

But what is the most efficient way of doing this?

Let’s look at the picture on the left, which plots a cost
function of policy in 3d space. The cost function basically
measures how close a policy is match to its objective.

So we want to minimize the cost, means traverse down the
surface. The most efficient way would be going along with

16

the steepest slop, which called policy gradient.

and here we go, we update the policy parameters by baby
stepping along the gradient direction, which is learning rate
times policy gradient.

Ok, what is the policy gradient look like?

16

RL Policy Gradient (Vanilla Policy Gradient)

𝐸𝑥𝑝 () ∗

Return – Baseline

Sum of Reward

13

Log(prob) from the output
of the policy network

Estimate how well the selected
action performs over expectation

There are actually several different ways of computing policy
gradient, here we use Vanilla Policy Gradient for simplicity
It is defined as the expectation over the log of the policy actions
times an estimate of the advantage function.
Ok, so what is that all means
The first term is our policy. It is log of the probability of taking an
action from the policy network of given state.
The second term is the advantage function, which basically tries
to estimate the relative value of the selected action in the current
state over the expectation.
In order to compute the advantage, we need two things, we need
sum of reward, which also called return, and we need a baseline
estimate.
The sum of reward is the sum of all the rewards that the agent
generates from current state and action to the end of episode. Such

17

reward usually comes with discount factor over time, here we ignore
that for simplicity

17

RL Policy Gradient (Vanilla Policy Gradient)

𝐸𝑥𝑝 () ∗

Return – Baseline

Estimate of Return
from this point onwards

Sum of Reward

13

s V(s)

Log(prob) from the output
of the policy network

Estimate how well the selected
action performs over expectation

And then the second part is the baseline or the value function.
What it does is trying to give an estimate of sum of reward from
current state and onward.
Basically it’s trying to guess what the final return is by the end of
episode starting from the current state.
During the training, this function is going to be frequently
updated using the collected experiences. So it can be trained as a
separate neural network along the way by supervised learning
What the supervised learn is, is basically training the policy with
labeled data and try to make the policy output matches with labeled
output. Due to the time limit, we are not going into the details of it.
For now, we can think it as a function that estimates the expected
return at given state.
##So now, we have the actual return from collected samples, then
subtract the expected return that estimated from value network.

18

This tells us if the current policy is over performed or under
performed to our expectation.
This is basically what advantage function does.
Now we have basic understanding of each piece of policy gradient
function, but how does it actually work?

18

RL Policy Gradient

𝐸𝑥𝑝 () ∗

Gradient tries to:

● Increase probability of paths with positive Adv

● Decrease probability of paths with negative Adv

14

It’s actually surprisingly simple. If the actions that the agent took in
the sampled path resulted in better than average return, then what
we’ll do is increase the probability of selecting them again.
Vise vera, if the advantage function was negative, then we will
reduce the likelihood of the selecting those actions.
Overtime, the agent will always take good actions and avoid bad
ones.

19

RL Structure & Pipeline15

RL Structure Training Loop

Now, let’s look at what the RL structure and training loop would be.
As we mentioned earlier, we are training the value network along
the side. So now we have both networks in our agent.
Then the update order would be,
##collecting the samples,
##compute return and advantage,
##and use that to update the Value network
##Then compute the gradient,
##and use that to update the policy network.
##And then we start over with collecting sample with our new policy
again. So on and so forth.

20

RL for Physics-based Character16

Lastly, let’s take a quick look how RL can be applied to the physics-
based animation.
Start with basic physical animation update, which we have a target
motion, then the physics update to drive the ragdoll to follow the
target, which generates the ragdoll motion.
We want to train an agent to help controlling the ragdoll. To do so,
we pass in both target states and ragdoll states to the agent, so it
fully aware of the current motion and target motion. The agent will
then generate action from its policy network, which will be applied
as some form of control signals to manipulate the ragdoll. So we will
get an updated ragdoll motion after physics update.
The final part of the process is that we need to evaluate how well
the agent performs and come up a reward to train the agent. There
are many different designs for reward calculations, but usually it
involves comparing ragdoll with target motion to find out how well

21

they match.

21

Agenda

Simulation & Control

RL Overview

Related Acadamic Research Papers

Training Wobbledoll

Wobbledoll at Runtime

Limitation & Future Work

Related Research Papers

17

Alright, now since we know the basics of RL. let’s dive into a few
research papers that Wobbledoll implementation is based on.

22

DReCon – Kevin Bergamin DeepMimic – XueBin Peng

Let’s dive into two papers that Wobbledoll mostly inspired from18

Wobbledoll system was inspired and borrow ideas from quite many
papers. Due to the time limit, I will only go through two of them
here, DReCon and DeepMimic

23

“We propose a novel, physically-based approach to character control that enables a high degree of
responsiveness while preserving the natural visual qualities of human motion.”

Watch GDC 2020 – ML Submit: Ragdoll Motion Matching
https://static-wordpress.akamaized.net/montreal.ubisoft.com/wp-
content/uploads/2019/11/13214229/DReCon.pdf

DReCon: Data-Driven Responsive Control of Physics-Based
Characters

19

Let’s start with DReCon. DReCon is a very cool algorithm, in which it manages
to train the ragdoll to perform locomotion in simulated environment.
As you see in this video, the white guy runs locomotion, and blue guy runs
simulation. You can barely tell the difference. The motion is precisely matched
and the control is very responsive.
There is talk in GDC 2020 introduces this algorithm in depth. Definitely worth
to check it out if you are interested.

24

DReCon Analysis

Pros: Cons: Takeaways :

• Replicate locomotion
precisely in simulated
environment

• Support highly responsive
controls

• Not designed for handling
Interactions

• Reaction motion doesn’t
look appealing

• RL pipeline works cohesively
with game update

20

Let’s look at the DReCon update pipeline. If you remember the
structure we mentioned in earlier tutorial, this is actually very
similar. The motion matching is basically an advanced locomotion
system. It uses that to generate target state. The policy also takes
ragdoll state from simulation. The output actions are the corrective
offsets, which gets applied to the target motion before passing into
the simulation & control.
Reward function wise, DReCon uses multiple sub rewards to make
sure the ragdoll poses, motion and velocities are matching to the
target.

This pipeline works cohesively with game update, especially that it
works directly with the locomotion system. This is the main idea we
borrowed for the Wobbledoll implementation.

25

The DReCon was designed to replicate locomotion. So, it has some
limitations when handling impacts and physical interactions. I will
discuss later how Wobbledoll improves on those asepcts.

25

“We propose an alternative framework using deep RL, enabling the learning of highly dynamic and acrobatic
skills, including those having task objectives and multiple clips.”

https://xbpeng.github.io/projects/DeepMimic/2018_TOG_DeepMimic.pdf

DeepMimic: Example-Guided Deep Reinforcement Learning of
Physics-Based Character Skills

21

Next, I'd like to talk about DeepMimic. DeepMimic is likely
the first paper to explore training a ragdoll agent to
accurately imitate a target motion. Additionally, the trained
ragdoll can also carry out assigned tasks, such as walking to a
specific destination or kicking a particular target.

26

DeepMimic Analysis

Pros: Cons: Takeaways :

• Able to replicate highly
dynamic skills

• Motion control is task
objective driven and less
responsive

• Task objectives are less
practical to apply in
gameplay environment

• DeepMimic uses Stable PD
controller and articulated
body solver for ragdoll control
and simulation

22

Structure wise, the key difference here is that the DeepMimic takes
task as part of the states and part of the reward calculation. That’s
the reason why the trained policy is able to complete a given task
while replicate target motion. However, the task driven scheme
doesn’t work too well with gameplay environment as games require
more responsive control and interactions.

Interestingly, the DeepMimic environment uses PD controller and
articulated body solver for ragdoll control and simulation, which are
the same as what we have. So our takeaway here is how DeepMimic
agent applying actions to the simulation environment.

27

Takeaways

DReCon RL pipeline works cohesively with game update

DeepMimic uses stable PD controller and AB solver

Some of the algorithm can be tested at MarathonEnvs
https://joanllobera.github.io/marathon-envs/

23

Now’s let’s sum up the key takeaways from 2 papers we analyzed.
DReCon offers great RL pipeline that works cohesively with the game
update
DeepMimic uses same control and simulation scheme as our game
environment, so we can follow the way how its agent applies action

##As a side note, I'd like to advertise an open-source project
called MarathonEnvs. Some of the papers I've talked about
here have already been implemented in this project.
MarathonEnv is built upon the Unity engine and is very easy
to use. If you're looking to get some hands-on experience
with RL-powered ragdolls, this is the go-to project.

28

Agenda

Simulation & Control

RL Overview

Related Research Papers

Training Wobbledoll

Wobbledoll at Runtime

Limitation & Future Work

Training Wobbledoll

24

Alright, now it’s time to talk about how we train the Wobbledoll

29

Now it’s Ready to Build the Training Environment
Based on combining DReCon & DeepMimic

25

Recap the research takeaways we talked about earlier. We are going
to follow the DReCon update pipeline and apply the action the same
way as DeepMimic does.
So we feed the agent the target motion and ragdoll motion as input
states, then it would generate action as control target for Stabe PD
controller. The simulation will carry on from that point.
##Additionally, we also feed agent several other states for
monitoring different things.
##Impact info tells agent the information about the external physical
interactions
##Ground info and feet contacts monitor the ground level around
player and feet placement
##We also pass in the action from previous frame to help agent
smooth out the action generation.
##Reward wise, similar to DReCon, we use multiple sub rewards to

30

evaluate similarity of root motion, local motion and local pose
between ragdoll and target. The sum of all the sub rewards will then
be scaled by the falling factor, which is measured by the head vertical
distance between the two. And here we go, we get the final reward
for our agent.

30

Early WIP Training Result26

So, this demo video shows the early training result when combining
DReCon and DeepMimic together. The solid character is agent-
controlled ragdoll. As you see here, it can follow the target
locomotion, which represented by the transparent character.
It definitely look more promising, however, you might already notice
that the impact reaction looks very rigid and repetitive. Its body
sometimes twitches weirdly when hit while standing still.

31

• Having difficulty with large impacts
• Lack of motion variations
• Abnormal motion appears when reacting to impact while standing still

This is a solid starting point, but...

It’s not quite there yet…

27

Well, we are not quite there yet. Other than the problem I
mentioned earlier, the trained ragdoll also has difficulties to handle
large impacts, such as bullet shots.
So how are we going improve this?

32

• Enlarge motion compacity
• Created balancing locomotion system
• Added cosmetic reaction behaviors on

upper body
• Post-physics animation composition

Improve Motion Variations28

First thing first, we added balancing motion into the training. We
tried both one off motions and looped stumbling motions. It turned
out the agent can pick up looped motion more effectively. Therefore,
we built a state machine for handling balancing locomotion as
shown in the picture on the right. Both stumbling and settling are
looping motions. They get connected with several transition motions.
Another thing we tried is using the partial body motion and post-
physics blend for cosmetic movements. They help adding more
variations and liveness to the reaction motion.

33

Improve Balancing Capability

Encourage agent to learn recovering from unbalanced state

• Add motion noise on training episode initial state
• Moderate fall termination threshold
• Add physical impact into training sessions

Gradually build up training difficulties

Improve learning efficiency

• Break training session into two stages, no physical perturbance in the first stage

• Use squared difference for all sub rewards.
• Constrained Multi-objective Reward Optimization – early terminate episode when sub reward drops

below threshold [UniCon, Wang, T. 2020]

29

For improving balancing capability, we did three things.
First, we exposed agent to unbalanced state a lot more and
encourage it to learn how to recover. We did so by adding more
motion noise, physical impact; also defer the fall termination.
Secondly, we staggered the training process with different
difficulties. This is because we found that the learning progress
became very slow if we add too much motion noise right from start.
Lastly, we improved learning efficiency by playing with reward
calculation and used a trick introduced by UniCon, called
Constrained Multi-objective Reward Optimization. What it does is
early terminates episode when sub reward drops below the
threshold. This trick helps balancing the weights between different
sub rewards.

34

The Balancing Capability is Now Much Improved30

Let’s take a look how does it perform with updated training scheme.
Now you have to try really really hard to knock him down. Each
bullet impact is 100 newton second (N*s). That’s equivalent to a
9mm bullet(150 grains or 10g) traveling at 10,000m/s. From the
impact deformation, you can tell that’s extremely heavy. Even so, it
takes more than 20 shots to knock him down.

35

Also Supports Variety of Reaction Behaviors31

Here’s another demo showing the bullet hit reaction while running.
Other than amazing balancing capability, the balancing motion is
also much more lifelike and polished. Sometimes covers the wound,
sometimes swings the arms, sometimes body flinches. Now you
really feel the impact each bullet produces.

36

Agenda

Simulation & Control

RL Overview

Related Research Papers

Training Wobbledoll

Wobbledoll at Runtime

Limitation & Future Work
Wobbledoll at Runtime

32

Alright, now we are happy with training result, let’s talk about how
to deploy it at runtime.

37

Pack Into Gameplay33

Start with basic game update loop. The physical animation takes
place among the animation update, physics update and post physics
update. Let’s take a closer look at those ones.

##Now the animation update is our driving target generation phase,
which produces the target motion for ragdoll to follow. This is also
where the balance agent applies its action to correct the target pose
for balancing purposes.
The Ragdoll Control & Simulation phase happens in physics update,
where it drive the ragdoll to follow the given target motion.
Finally, in post physics update, we perform any post blend with the
updated ragdoll pose and animation pose or IK correction. This
phase is useful for blending between physical animation and
kinematic animation states.
##Now let’s look further into balancer agent for a second. When

38

agent is fully trained, all we need is its policy network, which can be
used as a local function module. This is so called local inference.
Afterall, this whole chart basically covers the high-level overview of
the Wobbledoll system in-game integration. Next, I will talk about
how it can work cohesively with kinematic animation system.

38

Blend Wobbledoll In/Out34

The idea here is that we want to keep the game character stay in the
kinematic state as much as possible to keep tight control and save
performance cost. The Wobbledoll only takes over when there’s a
physical interaction happened. To do so, we built mechanics to
transition between two systems seamlessly.
Here’s a quick example of how the logic flow works.
##Let’s say a character starts with playing locomotion, moving
around and doing whatever.
##Then it got hit by something, the Wobbledoll system will be
activated to react and try to regain the balance. If it successfully do
so, it would blend back to locomotion and that’s it, end of show.
##But if the character got knocked over, the balancer will be shut
down and only play the physical animation.

39

Blend Wobbledoll In/Out

Comprehensive system

Wobbledoll can be triggered at any time

Bend back to locomotion when settled

Minimize active time to save performance

34

##Once it settle on the ground. We can then blend it black to
kinematic get-up animation.
There could be cases where the character got hit again while getting
up. Wobbledoll might enable balancer if character is already getting
off the ground, otherwise, we would just let it fall again.
##The cool thing about this logic flow is that we basically turning the
Wobbledoll into a comprehensive system, which means it covers
pretty much all possible scenarios, where character physical
interaction could happen. And it is performance efficient as the
Wobbledoll only stays active for a brief moment, and then it would
blend back to kinematic state when motion settles.

40

Here’s a Video with Debug Rendering
Yellow Tint Indicates that Wobbledoll is Active

35

Let’s take a look at this video with debug rendering on. The
character would turn yellow when the Wobbledoll is alive. As you
can see, the NPC activates Wobbledoll once player is bumping into
him. Then it blend back to kinematic when motion settles. The
transition between the two is pretty much seamless.

41

Local Inference

Simulation
Simulation

Performance Analysis

8 Wobbledoll characters

Double stepping physics

Local inference < 0.01ms

Simulation 5ms

Inference model size 1.6kb

Win10, AMD Threadripper 3970X

36

what about the runtime cost of Wobbledoll itself? Let’s take a look
at this profile capture here. It turned out the performance cost is
pretty much the same as running a plain ragdoll. That little tiny pink
block the arrow pointed at is the time cost for local inference, which
is basically nothing compares to the ragdoll simulation. So the
wobbleddoll performance is basically bounded by physics simulation.
As long as we don’t turn on too many of them at the same time, it
should be fine.
The inference model size is 1.6KB, which is fairly light weight

42

Agenda

Simulation & Control

RL Overview

Related Acadamic Research Papers

Training Wobbledoll

Wobbledoll at Runtime

Limitation & Future WorkLimitation & Future Work

37

Lastly, let’s talk about the limitation and future work.

43

Challenge & Limitations

● Motion quality and responsiveness is still not on par with mocap

● Motion compacity limitation

● Very sensitive to simulation environment

● Fine tuning is challenging and time consuming

38

The Wobbledoll system of course is far from being perfect. It has its
own limitations and there are still a lot rooms for improvements.
The motion quality is still not ideal. The motion compacity is limited.
The system is sensitive to simulation environment and hard to be
fine tuned. Sometimes it’s hard to tell if tuning a specific parameter
make it better or worth.

44

Step Onward…

Improve the motion quality

• Use adaptive motor strength and stiffness
• Use better muscle simulation scheme

Generalizability

• Recent research papers (AMP and ASE) reveal a generalization approach to train the ragdoll to perform a
wide range of motions.

39

Step onward we are planning to improve Wobbledoll system in two
main aspects.
One of them is to improve the motion quality. One thing we are
currently experimenting is to see if it is possible to let agent to
control the motor strength and stiffness.
Another direction we are looking into is see how to improve the
generalizability. A few recent papers reveal a new approach to use
generative adversarial network. We are going to experiment with
those ideas as well

45

Ryan Zhang
AI Specialist

Zherong Pan
Robotics/Simulation Specialist

Special Thanks to

Kan Xu
Animation Specialist

40

Lastly, I’d like to take a moment and thanks my teammates, Kan Xu,
Zherong Pan and Ryan Zhang. They made great contribution to this
research topic. Special thanks to them.

46

References
Featherstone R. A Divide-and-Conquer Articulated-Body Algorithm for Parallel O(log(n)). The International
Journal of Robotics Research. 1999;18(9):867-875.

J. Tan, K. Liu and G. Turk, "Stable Proportional-Derivative Controllers," in IEEE Computer Graphics and
Applications, vol. 31, no. 4, pp. 34-44, July-Aug. 2011, doi: 10.1109/MCG.2011.30.

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu. “Asynchronous
methods for deep reinforcement learning”. In: arXiv preprint arXiv:1602.01783 (2016).

Kevin Bergamin, Simon Clavet, Daniel Holden, and James Richard Forbes. 2019. DReCon: data-driven responsive
control of physics-based characters. ACM Trans. Graph. 38, 6, Article 206 (December 2019)

Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel van de Panne. 2018. DeepMimic: example-guided deep
reinforcement learning of physics-based character skills. ACM Trans. Graph. 37, 4, Article 143 (August 2018)

Wang T, Guo Y, Shugrina M, Fidler S. Unicon: Universal neural controller for physics-based character motion.
arXiv preprint arXiv:2011.15119. 2020 Nov 30.

Peng XB, Ma Z, Abbeel P, Levine S, Kanazawa A. Amp: Adversarial motion priors for stylized physics-based
character control. ACM Transactions on Graphics (TOG). 2021 Jul 19;40(4):1-20.

Peng XB, Guo Y, Halper L, Levine S, Fidler S. Ase: Large-scale reusable adversarial skill embeddings for physically
simulated characters. ACM Transactions On Graphics (TOG). 2022 Jul 22;41(4):1-7.

41

47

March 20-24, 2023 | San Francisco, CA

Website: https://www.lightspeed-studios.com/

Facebook：LightSpeedStudiosGames

Twitter：LIGHTSPEED STUDIOS

Youtube：LIGHTSPEED STUDIOS

Welcome to stop by our booth S1069 if you

would like to learn more about LIGHTSPEED

STUDIOS!

WE’RE HIRING!

48

