
User Interface in Cyberpunk 2077
Challenges and Optimizations

Arkadiusz Antonik | Engineering Director CD Projekt RED

2

Arkadiusz Antonik

● 10 years in the game industry
● Engine, Tools, Gameplay and User Interface

programmer
● UI Code Lead, Cyberpunk 2077
● Engineering Director, Polaris (next AAA

Witcher game)

3

1. Introduction
2. UI framework evolution
3. Challenges
4. Optimizations
5. Summary

AGENDA

4

LET’S PLAY A GAME

https://docs.google.com/file/d/1pCyjp25-0L3XDRcWNDw_AX21n4BQZotM/preview

5

UI FRAMEWORK DEVELOPMENT TIMELINE

WITCHER 3
BLOOD&WINE

Release date

MAY 2016

6

Why Custom User
Interface Framework?

7

EXPECTATIONS TOWARDS THE UI FRAMEWORK

Technical side

● In-engine creation
● Shorter iteration time
● Using internal engine subsystems
● Higher density and complexity

Creative side

● More dynamic elements
● Support for multiple languages
● Possibility to display & interact in 3D
● Contains embedded videos
● Possibility to use custom materials &

effects

8

RESEARCH AND LACK OF
EXISTING SOLUTIONS

Evaluation of existing solutions

● Scaleform was dropped and not
supported

● No single complete solution
● Partial solutions/middleware:

○ not efficient
○ not scalable enough
○ challenging integration with

RedEngine

9

UI FRAMEWORK DEVELOPMENT TIMELINE

MAY 2016

WITCHER 3
BLOOD&WINE

Release date

APRIL 2017

Decision about
creating custom UI

framework

Ink framework was
born

10

UI FRAMEWORK DEVELOPMENT – step 1/3

● In-engine MVP (a few weeks)
○ simple widget types
○ 2d input propagation
○ layout building
○ integration with RedEngine systems

■ renderer
■ input system
■ file system

11

UI FRAMEWORK DEVELOPMENT TIMELINE

MAY 2016

WITCHER 3
BLOOD&WINE

Release date

APRIL 2017

Decision about
creating custom UI

framework

Ink framework was
born

JUNE 2017

MVP of UI
framework

13

UI FRAMEWORK DEVELOPMENT – step 2/3

● In-game UI (around half a year)
○ fully functional UI elements
○ simple 3d implementation
○ no editors

■ all layouts hardcoded in c++
○ support for embedded videos

14

UI FRAMEWORK DEVELOPMENT TIMELINE

MAY 2016

WITCHER 3
BLOOD&WINE

Release date

APRIL 2017

Decision about
creating custom UI

framework

Ink framework was
born

JUNE 2017

MVP of UI
framework

DECEMBER 2017

The first in-game
UI

Internal demo

15

https://docs.google.com/file/d/1OubclUPS_V6GSuFFFDENlSucVNVmLwsD/preview

16

UI FRAMEWORK DEVELOPMENT – step 3/3

● Proper implementation
○ proper connection engine <- UI -> gameplay

● Proper pipelines
○ editors and asset importers

● Proper UI in game
○ not hardcoded in c++

● and more …

17

SOME OFFLINE STATISTICS

Number of files Weight of files

Embedded videos 584 10.4 GB

UI textures 1933 4.3 GB

Widget libraries 1584 116.8 MB

Widget atlases 1079 37.3 MB

Fonts 49 31.4 MB

Widget animations 714 21.4 MB

Widget styles 253 4.7 MB

HUD resources 16 0.9 MB

Widget menus 7 0.5 MB

18

User Interface budgets
in Cyberpunk 2077

19

UI MEMORY BUDGET

Budget

● 40 MB on CPU
○ finally 55 MB (because of fonts)

● 250 MB on GPU

Starting point

● CPU memory: ~150 MB
● GPU memory: ~700 MB

20

UI TIME BUDGET

Budget

● 3-5ms on the heaviest
synchronization thread

● Multithreaded execution

Starting point

● 10-15 ms on a single thread

21

UI FRAMEWORK DEVELOPMENT TIMELINE

APRIL 2017

Decision about
creating custom UI

framework

Ink framework was
born

JUNE 2017

MVP of UI
framework

DECEMBER 2017

The first in-game
UI

Internal demo

Public Gameplay
Reveal

Gamescom demo

SEPTEMBER 2018

Budgets are
introduced into the

game.

Big optimization
has been started!

AUGUST 2018

22

Welcome budgets!

Welcome challenges!

23

WHY UI IS THAT HEAVY?

ANSWER 1:

UI framework is not optimized [code] SOLUTION

Optimize UI framework to keep
in memory, update and draw
ONLY UI instances that are
really necessary at the specific
moment in the game.

ANSWER 2:

Too many UI instances [content]

24

WHERE IS THAT COMPLEXITY?

● On-screen UI
○ Minimap
○ Mappins
○ 3D Map
○ Inventory
○ Perks
○ HUD elements

25

WHERE IS THAT DENSITY?

● In-world UI
○ UI on weapons
○ UI in cars
○ Device system
○ Billboards
○ Localized street signs
○ Global TV system
○ Localized texts in random

places

26

SOME RUNTIME STATISTICS

Active animations ~330

Passive animations ~60

Spawned widgets ~16000

Game controllers ~160

Logic controllers ~1650

Advertisements ~330

Independent layers ~12

HUD entries ~65

3D UI spawned ~150

3D UI in view ~70

Languages Up to 4 simultaneously

27

UI terms definition - part 1/3 : HIERARCHY

UI Instance

Independent UI hierarchy,
instantiated in memory with
it’s all depended assets and
objects, like: textures,
animations, render targets.
Spawned from Widget Library
Item.

Widget Library Item

Single UI hierarchy (template)
that can be spawned
(instantiated) in runtime and
became a UI instance. Exists in
Widget Library asset.

Widget Library asset

Asset/file that contains a list
(a library) of Widget Library
items and references to
depended assets.

28

OPTIMIZATIONs

29

LAYER CONCEPT (1/3): DEFINITION

UI layer

Independent logical object containing
many UI hierarchies (dependent or
independent from each other).

A single layer contains

● four main objects:
○ event broker
○ spawning processor
○ controller processor
○ animation processor

● separate resource management
● custom separate drawing logic

30

LAYER CONCEPT (2/3): TYPES

Layers type

● Fullscreen (Watermarks, System
Notifications, Loading, Game
Notifications, Menu, Video, HUD,
Photo Mode, Editor)

● In-world (World, Advertisements,
Street Signs)

● Misc (Offscreen, Debug)

31

LAYER CONCEPT (3/3): ASSUMPTIONS

● Asynchronous layer update
○ Asynchronous game controller update
○ Asynchronous spawn request execution

■ Synchronized attaching process
○ Asynchronous animation update

■ Synchronized applying values process
● Asynchronous layer draw

○ Synchronized final composition process
● Independent job chain per layer

32

33

Input calculation &
propagation

UI system preparation

34

Layers update
- UI game logic execution
- spawning
- animation update

35

Hierarchies
arrangement

36

Widget
drawing

37

UI FRAMEWORK DEVELOPMENT TIMELINE

JUNE 2017

MVP of UI
framework

DECEMBER 2017

The first in-game
UI

Internal demo

AUGUST 2018

Public Gameplay
Reveal

Gamescom demo

SEPTEMBER 2018

Budgets are
introduced into the

game.

Big optimization
has been started!

Layer mechanism
is introduced

The first set of
layers decoupled

UI correctly

JANUARY 2019

38

Multithreading UI
framework
● Extract all independent calculations and

make them asynchronous
● Use separate render targets to draw UI

asynchronously
● Cache everything what is possible
● Start UI update process in frame as soon as

possible

TAKE AWAY

39

OPTIMIZATIONs

40

Active & Passive modes

● Two types of logic execution
○ Active

■ UI is probably visible
■ All logic is executed

○ Passive
■ UI is not visible
■ Crucial part of logic is executed

● Custom definition per each layer
● Very flexible mechanism

41

Game controller

● Can be ticked (by default is off)
● Have access to all game system
● Is managed by controller processor
● Can be added only to UI instance
● Is controlled by a central system
● Examples:

○ CarGameController
○ ElevatorGameController
○ MinimapGameController
○ PaperdollGameController

UI terms definition - part 2/3 : CONTROLLERS

Logic controller

● Event based (no tick function)
● Contains UI logic only
● Has access only to owning widget and

hierarchy below it
● Can be added into any widget
● Used to extend widget functionality
● Examples:

○ ButtonLogicController
○ CensorshipLogicController
○ SliderLogicController

42

Controller processor

● contains all game controllers for a particular layer
● centralize tick execution
● decides about tick mode for each game controller
● pass a game systems context into game controllers
● spread execution on different threads
● decides about life time for all game controllers

43

Spawning processor

● spawns UI instances asynchronously by default
● has a cap of active spawn processes per frame
● can deferred or cancel spawning process
● manages loading processes for dependent assets
● can use pools to reuse the same hierarchies
● attaching new instances sequentially

44

Separate logic based on tick
from events
● Event based logic is relatively lightweight
● Keep strict control over tick based logic
● Disable tick always if possible
● Avoid data pulling mechanism on a big scale

TAKE AWAY

45

OPTIMIZATIONs

46

Example of animation challenge

BRIEFINGS

● fully animated
● contain videos
● almost every text is localized
● can be split based on player choices
● any part can be played any time

47

UI terms definition - part 3/3

Animation Definition
(template)

Object that contains animation
interpolators and events
placed on timeline in a specific
order. Order and properties
don’t change in runtime.

Animation
Interpolator

Object that contains
information how to interpolate
specific animated property

Animation Instance

Refers to the animation
definition and stores current
values of interpolators while
playing animation timeline
based on delivered playback
options. Can be changed in
runtime.

48

● Active mode
○ Increment animation time
○ Asynchronous interpolators evaluation
○ Asynchronous values applying process

■ Sequential inside dependency bucket
○ Firing all events

● Passive mode
○ Increment animation time
○ Firing relevant events

Animation processor

49

Optimizations for UI animations
● Keep single animation template in memory
● Use lightweight animation metadata for each instance
● Calculate and apply animated values only if effect is

visible for the player
● For invisible animations update only their time

TAKE AWAY

50

OPTIMIZATIONs

51

UI FRAMEWORK DEVELOPMENT TIMELINE

DECEMBER 2017

The first in-game
UI

Internal demo

AUGUST 2018

Public Gameplay
Reveal

Gamescom demo

SEPTEMBER 2018

Budgets are
introduced into the

game.

Big optimization
has been started!

JANUARY 2019

Layer mechanism
is introduced

The first set of
layers decoupled UI

correctly

Advertisements
layer was

introduced

APRIL 2019

52

ADVERTISMENTS DESIGN

● Texture memory reduction
○ one texture atlas
○ many advertisements layouts
○ reusing render target memory

■ spawn and draw what is visible
● Possibility to animate advertisements
● Censorship filter
● Runtime randomization
● Custom lightning support

53

One texture atlas file Many different advert layouts

54

Animated version for each advert

55

Original version Censored version

56

How many of them?

57

How many of them?

58

https://docs.google.com/file/d/14DlkGw4s1qr3dE8TnVmAUon4BxywimWd/preview

59

PLAYER VIEW OPTIMIZATIONS

● Distance check
● Frustum culling

○ Rotation/movement prediction
○ Inertia mechanism

● Occlusion culling
○ Custom software implementation

● Screen coverage
○ Problem with "weapon plane"

● Static texture replacements
● “In a car” case

○ Streaming delay
○ Skipping update and draw

60

View optimizations
● Use optimization pipelines as for normal 3d geometry
● Use passive mode if UI instance is invisible
● Adjust render quality of UI instance to its screen coverage

TAKE AWAY

61

OPTIMIZATIONs

62

More and more ui
instances in world

Visible hitches

● 5 global TV channels
○ 3 draw passes each

● Many UI instances in cars
● Big variety of icons

63

UI FRAMEWORK DEVELOPMENT TIMELINE

AUGUST 2018

Public Gameplay
Reveal

Gamescom demo

SEPTEMBER 2018

Budgets are
introduced into the

game.

Big optimization
has been started!

JANUARY 2019

Layer mechanism
is introduced

The first set of
layers decoupled UI

correctly

APRIL 2019

Advertisements
layer was
introduced

Offscreen layer
was introduced

JULY 2019

64

OFFSCREEN LAYER

● Mixes in-world and fullscreen approach
● Deferred processing
● Not blocking
● Works on pairs (UI resource and render target)
● Depends on the frame condition
● Use case examples:

○ inventory icons
○ global TV overlay
○ dynamic masks for complex effects

65

Example of offscreen processing

UI template is defined for
each channel and is fixed

Single TV channel

QUEST TV SCHEDULER

UI template
widget

Pre rendered video UI overlay
Rendered

target

decides about current
playing video for each

channel

decides about news
shown on the info bar on

top of the video

66

EXAMPLE Result of offscreen drawing

https://docs.google.com/file/d/1l3qGE9HKV3wZDKvT5HprruBqZqgIqkHV/preview

67

Offscreen layer
● Cache and reuse as much as you can
● Use frame time only when it is available
● Fire and forget using independent render targets

TAKE AWAY

68

OPTIMIZATIONs

69

UI FRAMEWORK DEVELOPMENT TIMELINE

SEPTEMBER 2018

Budgets are
introduced into the

game.

Big optimization
has been started!

JANUARY 2019

Layer mechanism
is introduced

The first set of
layers decoupled UI

correctly

APRIL 2019

Advertisements
layer was
introduced

JULY 2019

Offscreen layer
was introduced

Street Signs
extraction to

separate layer

SEPTEMBER 2019

70

STREET SIGNS LAYER ASSUMPTIONS

● Similar to advertisements
● Localized but not randomized
● Assembled in runtime
● Hundreds of them across the Night City
● Quick render target fragmentation

71

Render targets manager

● Solution for render target fragmentation
● Render targets as texture atlases
● Uses wrappers over render targets
● Complex matching mechanism

○ Supports many edge cases
○ Special render rules for icons

● Separate render target pools (3D UI & Effects)

72

Example result of HLOD render target

73

Render target manager
● In-world UI can be very often downscaled
● UI screen coverage is a good indicator of quality factor
● Draw to smaller area inside the render target instead of

downscaling render target itself

TAKE AWAY

74

OPTIMIZATIONs

75

WHY STILL THAT LONG?

Many many other UI mechanisms for optimization

● Hierarchy caching
○ cache widget, HUD caching

● Data optimizer
○ font, regex reduction

● Data driven approach
○ inventory item pooling, web pages templates, device templates, styles

● Text animation
● Text parameters
● Markup language
● Interaction with UI in 3D on complex meshes

but it is a story for another time!

76

UI FRAMEWORK DEVELOPMENT TIMELINE

JANUARY 2019

Layer mechanism
is introduced

The first set of
layers decoupled UI

correctly

APRIL 2019

Advertisements
layer was
introduced

JULY 2019

Offscreen layer
was introduced

SEPTEMBER 2019

Street Signs
extraction to

separate layer

Cyberpunk 2077
release

DECEMBER 2020

77

GLOBAL TAKEAWAYS
● Deadlines and budgets are your friends
● Code decoupling and parallel execution were key

solutions
● You must have an amazing team to achieve amazing

things

TAKE AWAY

78

UI Team

● Started as a team of 3 developers
● Finished as 3 UI teams (art, design, code)
● Max peak in UI Code: 11 developers

CREDITS TO:

Adamo Maiorano, Yaroslav Getsevich, Przemysław Machniewski, Galust Saakov,
Bartłomiej Wardziński, Natalia Nowacka, Jeremiasz Kacprzak, Adam Dumała

Additional thanks:

Monika Janowska, Robert Bielecki, Jonathan Huot, Andrzej Uszakow, Aleksandra
Lato, Artur Wyszyński, Przemysław Banasiak, Wojciech Czarny, UI Design Team and
UI Art Team

UI Team

● Started as a team of 3 developers
● Finished as 3 UI teams (art, design, code)
● Max peak in UI Code: 11 developers

CREDITS TO:

Adamo Maiorano, Yaroslav Getsevich, Przemysław Machniewski, Galust Saakov,
Bartłomiej Wardziński, Natalia Nowacka, Jeremiasz Kacprzak, Adam Dumała

Additional thanks:

Monika Janowska, Robert Bielecki, Jonathan Huot, Andrzej Uszakow, Aleksandra Lato,
Artur Wyszyński, Przemysław Banasiak, Wojciech Czarny, UI Design Team and UI Art
Team

THANK YOU!

