
V I R T U O S C O N F I D E N T I A L

Maximizing Graphics Performance
with Flexible Virtualized Geometry

Marios Michaelides
Engineering BU Director

Alexis Vaisse
Senior Technical Director

1

V I R T U O S C O N F I D E N T I A L

Paris

San Francisco

Los Angeles

Dublin

Lyon
Montpellier

Montreal Prague Kyiv
Warsaw

TokyoSeoul

Shanghai

Xi’an

Chengdu

Ho Chi Minh City
Da Lat

Kuala Lumpur
Singapore

Vancouver

One of the largest independent developers

3700+
PEOPLE

22
LOCATIONS

900+
CLIENTS

20
YEARS

1500+
TITLES

2

V I R T U O S C O N F I D E N T I A L

Lyon
Montpellier

Prague
Warsaw

One of the largest independent developers

3

V I R T U O S C O N F I D E N T I A L

TABLE OF
CONTENTS

02. Creating Hi-res Vision

03. How to support multiple game engines?

04. Going further: geomorphing and future work

05. Conclusion & takeaway

01. Why use virtualized geometry?

We’re going to start by explaining why we took the decision to develop this
technology.
The second part, which is the biggest one, will cover the technology in more detail.
One specificity we have at Virtuos is that we work on different game engines.
Developing the technology for multiple game engines was a must have. We’ll see
briefly how we achieved this.
We are constantly improving the technology. I will conclude with an overview of the
subjects we are currently working on.

4

V I R T U O S C O N F I D E N T I A L

WHY USE
VIRTUALIZED
GEOMETRY?

5

V I R T U O S C O N F I D E N T I A L

Artists’ dream

1. Create high-resolution
high-quality mesh

2. Import to game engine

3. Done

6

V I R T U O S C O N F I D E N T I A L

Artists’ dream vs reality 1. Artist creates mesh

2. Artist imports mesh to game engine

3. QA team reports bad performance
and creates ticket

4. Programmer gets ticket, investigates, reports that
mesh resolution is too high, and assigns ticket to artist

5. Artist spends more time to optimize mesh
and generate LODs

6. During game review,
Art Director complains about quality

7. Artist spends additional time to improve the mesh

8. QA team reports out-of-memory crash
on console & creates new ticket

9. Programmer gets ticket, investigates, reports that
mesh resolution is still too high for consoles…

1. Create high-resolution
high-quality mesh

2. Import to game engine

3. Done

7

V I R T U O S C O N F I D E N T I A L

Game engine always manages to
get good performance and

respect memory budget

The technology can be used on
different game engines

Artists only work with
high-resolution meshes

Compatible with
forward

rendering

Compatible
with virtual

shadow

Compatible
with cascade

shadow

Support
different

streaming
systems

V I R T U O S C O N F I D E N T I A L

Objectives

What can we do to improve this?
We want artists to only work with high-resolution meshes.
And it’s up to the game engine to manage to get good performance and respect the
memory budget.
Don’t forget that we work with multiple game engines.
So, we want the technology to be compatible with different game engines.
It must be compatible with forward rendering, deferred rendering, virtual shadow,
cascade shadow, raytracing, various streaming systems, etc.

8

V I R T U O S C O N F I D E N T I A LV I R T U O S C O N F I D E N T I A L

Expected results

Better performance

• Dynamically adjust LOD level to
reach expected performance

• More stable performance
compared to classical rendering

Save production time

• Spend much less time optimizing
meshes

Better quality

• Allow artists to use
higher-resolution meshes

• Use better resolution at runtime
compared to classical rendering

Less out-of-memory
crashes

• Use a fixed memory budget

• Reduce out-of-memory crashes
on consoles during production

We want to reach a better quality because artists will use higher-resolution meshes
and the graphics engine itself will use higher-resolution compared to classical
rendering.
We also want to get better performance and, probably as important, more stable
performance compared to classical rendering.
We also expect to save production time because we won’t need to optimize meshes,
or, at least, we’ll spend less time to optimize them.
And the last point is that we’ll decrease the number of out-of-memory crashes on
consoles during production because we use a fixed memory budget.

9

V I R T U O S C O N F I D E N T I A L

CREATING
HI-RES VISION

OK. We set quite ambitious objectives. Let see what we did to achieve them.

10

V I R T U O S C O N F I D E N T I A L

02. Builder stage

03. Runtime stage

Traversal

Occlusion culling

Rendering

Streaming

01. Challenges to solve

I will start with the different technical challenges to solve, then we’ll dive into the
different parts of the technology itself. The first one is the builder stage, and the
second one is the runtime stage with the traversal, the occlusion culling, the
rendering, and the streaming.

11

V I R T U O S C O N F I D E N T I A L

Challenges to solve

Buddha
statue

4.5-meter
height

200 tons

3.5M triangles

Let’s take this wonderful Buddha statue, 4.5-meter height, 200 tons, and 3.5 millions
triangles.
Let’s get closer.

12

V I R T U O S C O N F I D E N T I A L

Challenges to solve

Which LOD
to use?

Which LOD should we use to render it?

13

V I R T U O S C O N F I D E N T I A L

Challenges to solve

Good quality

High LOD

Poor
performance

If we use a higher LOD, we’ll get good quality but poor performance.

14

V I R T U O S C O N F I D E N T I A L

Challenges to solve

Good
performance

Low LOD

Poor quality

And if we use a lower LOD, we’ll get good performance but a poor quality.

15

V I R T U O S C O N F I D E N T I A L

Challenges to solve

We want to
render

an object
with

different
LODs
at the

same time

I’d like to have this, which is different LODs based on the camera distance.
So, we want to render an object with different LODs at the same time.

16

V I R T U O S C O N F I D E N T I A L

Challenges to solve

We want to
render

an object
with

different
LODs
at the

same time

Let’s get closer.
What will happen if I use a lower LOD for the upper part of the mesh?
Let’s try it.

17

V I R T U O S C O N F I D E N T I A L

Challenges to solve

We want to
render

an object
with

different
LODs
at the

same time

with no
seam!

Oops, we get a hole between LODs.
Let’s rephrase our objective: We want to render an object with different LODs at the
same time… with no seam.

18

V I R T U O S C O N F I D E N T I A L

Challenges to solve

Even if this part
is displayed

using the best
LOD,

we don’t want
the best LOD to

be loaded for
the rest

We want
streaming at
sub-object

level

Let’s go back to our wonderful statue.
Even if a part of the mesh is displayed using the highest LOD, I don’t want the highest
LOD to be loaded for the rest of the mesh.
Which means that we want streaming at sub-object level.

19

V I R T U O S C O N F I D E N T I A L

Challenges to solve

Even if this object
is only partly

occluded,
I would like the

occluded part to not
be rendered at all to

improve performance

We want
occlusion culling

at sub-object
level

Even if an object is only partly occluded, I’d like the occluded part to not be rendered
at all to improve performance.
Which means that we want occlusion culling at sub-object level.

20

V I R T U O S C O N F I D E N T I A L

Challenges to solve

Render an object
with different

LODs at the same
time Occlusion

culling at
sub-object

level

Let me summarize the different challenges that we’ve identified:
We want to render an object with different LODs at the same time with no seam.
We want data streaming at sub-object level, and occlusion culling at sub-object level
as well.
Still compatible with multiple game engines.

21

V I R T U O S C O N F I D E N T I A L

02. Builder stage

03. Runtime stage

Traversal

Occlusion culling

Rendering

Streaming

01. Challenges to solve

The builder stage is usually integrated into the import process.

22

V I R T U O S C O N F I D E N T I A L

Builder stage

Step 1: Cluster creation

• We use the METIS library to split the mesh
into clusters

• Each cluster contains 128 triangles
(user-defined)

What do we do here?
The first step is to split a mesh into small parts that we call clusters.
We use the METIS library for this.
The size of the clusters is user-defined, but 128 triangles usually give the best
performance.

23

V I R T U O S C O N F I D E N T I A L

Builder stage

Step 1: Cluster creation

• We use the METIS library to split the mesh
into clusters

• Each cluster contains 128 triangles
(user-defined)

Here are the different clusters that we get for this mesh.

24

V I R T U O S C O N F I D E N T I A L

Builder stage

Step 2: Decimation

• Merge group of contiguous clusters
(typically, 32 clusters)

• Remove edges to divide the number of
triangles by 2

• Create 16 clusters to form the next level

Edges at the border are preserved
to avoid holes between LODs

The next step is what we call the decimation.
For this, we merge a group of contiguous clusters. A typical value is 32 clusters.
Then we remove edges to divide the number of triangles by exactly 2.
What is very important is to preserve edges at the border to avoid holes between
LODs.
Then we create 16 new clusters. These clusters will be part of the next LOD.
Here, you can see the new clusters of the object.

25

V I R T U O S C O N F I D E N T I A L

Builder stage

Step 2: Decimation

• Merge group of contiguous clusters
(typically, 32 clusters)

• Remove edges to divide the number of
triangles by 2

• Create 16 clusters to form the next level

One of the biggest challenges!

A lot of tweaking here
to reach good quality

The difficult part here is the edge collapse phase.
Basically, you have an error function that you use to select the edges to remove.
We have spent months to tweak this error function to improve the quality of the
generated LODs.

26

V I R T U O S C O N F I D E N T I A L

Builder stage

Step 3: Graph building

• The 16 clusters of the next level are
the parents of the 32 previous
clusters

• Clusters form a
Direct Acyclic Graph

Larger triangles

Smaller triangles

Step 3 is the creation of the graph.
The 16 clusters of the next level are the parents of the 32 previous clusters.
The clusters form a direct acyclic graph.
Direct means that edges are one-way edges.
Acyclic means that there is no cycle.
It’s not a tree because a node can have several parents.
On the top, we have clusters with larger triangles.
On the bottom, we have clusters with smaller triangles.
Here, the graph is very simple.
In practice, we have graphs like this, which are more difficult to debug.

27

V I R T U O S C O N F I D E N T I A L

Builder stage

Step 4: Chunk creation

• Group clusters to create chunks

• All chunks have the same size on disk

• 1 chunk = 1 block on disk to be streamed

The last step is the creation of the chunks.
A chunk is simply a group of clusters.
Here, we have a first chunk, then a second one, and the last one.
Why are we doing this?
Remember, a cluster is very small because it only contains 128 triangles.
To be efficient, we must stream larger blocks of data.
All chunks have the same size on disk, and a chunk is the minimum amount of data
that we can stream from the disk.

28

V I R T U O S C O N F I D E N T I A L

Builder stage

Step 3:
Graph building

Step 4:
Chunk

creation

Step 2:
Decimation

Step 1:
Cluster

creation

Let me summarize the different parts of the builder phase:
First, we split the mesh into small clusters.
Then we decimate to reduce the number of clusters to create the different LODs until
we have a single cluster left.
We build a graph with the different clusters.
And we group clusters together to create chunks that will be streamed from disk.

29

V I R T U O S C O N F I D E N T I A L

02. Builder stage

03. Runtime stage

Traversal

Occlusion culling

Rendering

Streaming

01. Challenges to solve

Let’s switch to the runtime stage.
The first step is the traversal.

30

V I R T U O S C O N F I D E N T I A L

Runtime stage – Traversal

• A compute shader which traverses the graphs to
determine for each object:

Output: List of pairs (cluster ID, object ID)

Will be read by the next
compute shader

Output: List of cluster ID
Will be sent to RAM

• The clusters to render

• The clusters to stream

• Clusters are selected based the projected
bounding volume size on the screen Goal: each triangle has

the same size on screen

Clusters to render

Clusters to stream

The traversal is a compute shader which traverses all graphs to compute for each
object the list of clusters to display.
We start from the graph’s root, and we go down until we reach a cluster whose size
on the screen is small enough.
The output is a list of pairs of cluster ID and object ID. We need the object ID to get
the transform to apply, as well as the other per-object properties.
This list will be used by the next compute shader.
We also compute the list of clusters that need to be streamed from disk.
This time, we only need the cluster IDs.
This list will be sent to RAM and used to generate the streaming requests.
We select the clusters based of the size of their bounding spheres projected onto the
screen.
The goal is to have triangles with approximately the same size on screen.

31

V I R T U O S C O N F I D E N T I A L

02. Builder stage

03. Runtime stage

Traversal

Occlusion culling

Rendering

Streaming

01. Challenges to solve

Next step is the occlusion culling.

32

V I R T U O S C O N F I D E N T I A L

Runtime stage – Per-cluster occlusion culling

• 1 compute shader for per-cluster frustum culling

Output: List of DrawIndirect commands with (cluster ID, object ID)

Uses the results of the traversal phase

Must be done after the Z-Prepass

Tests the bounding sphere of each
cluster against the hierarchical Z Buffer

• 1 compute shader for per-cluster occlusion culling

We have a compute shader which takes the input of the traversal phase, does the
frustum culling for the different clusters, and generates a new list of clusters.
Then another computer shader which does the same for the occlusion culling.
It uses the result of the Z-Prepass, that’s why it must be executed after the Z-Prepass.
Basically, we test the bounding volume of each cluster against the hierarchical Z
Buffer.
The output is a list of DrawIndirect commands with pairs of cluster ID and object ID.

33

V I R T U O S C O N F I D E N T I A L

Runtime stage – The rendering

• We simply execute the list of DrawIndirect commands

• Pixel shaders are not modified

Very important to stay
compatible with all materials

The rendering phase itself is pretty simply because we simply execute the
DrawIndirect commands.
We don’t modify the pixel shaders.
This is very important because we need to stay compatible with all materials,
whether hardcoded or generated.

34

V I R T U O S C O N F I D E N T I A L

02. Builder stage

03. Runtime stage

Traversal

Occlusion culling

Rendering

Streaming

01. Challenges to solve

The last step is the streaming.

35

V I R T U O S C O N F I D E N T I A L

Runtime stage – Streaming

• We work at the chunk level

• Fixed memory budget = fixed number of chunks

• For each chunk, store the time of last use

• Use LRU (Least Recently Used) algorithm to choose chunks to unload

• Chunks can have a priority level

All chunks have the same size on disk

1 chunk = a list of clusters

Remember, for the streaming, we work at the chunk level.
A chunk is a list of clusters, and all chunks have the same size on disk.
We used a fixed memory budget, so we have a fixed number of chunks that can be in
memory at the same time.
For each chunk, we store the time of last use, and we use a classical LRU – Least
Recently Used – algorithm to choose a chunk to unload when we need to load a new
chunk.
This part was not too difficult to implement, until we had to add a notion of priority.
Then things became more complex.

36

V I R T U O S C O N F I D E N T I A L

TABLE OF
CONTENTS

02. Creating Hi-res Vision

03. How to support multiple game engines?

04. Going further: geomorphing and future work

05. Conclusion & takeaway

01. Why use virtualized geometry?

37

V I R T U O S C O N F I D E N T I A L

HOW TO SUPPORT
MULTIPLE
GAME ENGINES?

We’re going to see some techniques that we used to support several game engines.

38

V I R T U O S C O N F I D E N T I A L

Support for multiple game engines

All code in C++ libraries

Zero dependency
on engine code

Create interfaces and only use
interfaces to access engine code

Implement these interfaces
on game engine side

The main idea is that we put all code in C++ libraries, that have no access to the
engine code.
We can access the engine code only through interfaces that we created, basically
abstract classes.
And we implement these interfaces on the game engine side.

39

V I R T U O S C O N F I D E N T I A L

The interfaces – The easy ones

IMemoryAllocator

IVideoMemoryAllocator

ILogger

Allocates memory in RAM

Allocates memory in VRAM

Displays messages in editor

Let see some of these interfaces.
Some are very simple, such as a memory allocator to allocate memory in RAM, a
video memory allocator, or a logger to display messages.

40

V I R T U O S C O N F I D E N T I A L

The interfaces – The streaming

IIdProvider • Provides ID to identify data
(file, part of file)

An ID is fully generic (array of bytes)

It can be a GUID, a file name, a full path or anything

IStreamingManager
• Send request to stream data
• Be called when data has been loaded

We need to
support both

Use small files and always read entire files?

Use bigger files and read parts of files?
We need a generic

way to identify a data

For the streaming, we have a streaming manager to send a request to stream a block
of data and register a callback to be warned when the data has been loaded.
Should we put one chunk per file? Or all chunks in a single file?
Well… It depends on the game engine.
We need to support both.
So, we need a generic way to identify a data to stream.
To do so, we created another interface to provide an ID to identify a data.
The ID must be generic. In fact, it’s just an array of bytes.
It can be whatever we want, a path, a file name, a GUID, etc.

41

V I R T U O S C O N F I D E N T I A L

The interfaces – The rendering

IBinder Binds a buffer to a shader

The rest of the rendering is engine-specific

For the rendering phase, we have a binder interface to bind a buffer to a shader.
And the rest of the rendering code is engine specific.

42

V I R T U O S C O N F I D E N T I A L

The shaders

Shaders are
written in HLSL in

the library
but rewritten for

each game
engine

Usually a
straightforward

operation

Game engines
usually have their

own shader
language

As for the shaders, game engines usually have their own shader language on top of
HLSL.
Our shader are written in HLSL in the library but rewritten for each game engine.
This is usually a straightforward operation.

43

V I R T U O S C O N F I D E N T I A L

The rendering

Quite a lot of
engine-specific

code

We need to
integrate the shaders

in the different
rendering passes

For the rendering itself, we need to integrate the shaders in the different rendering
passes.
This requires quite a lot of engine-specific code.

44

V I R T U O S C O N F I D E N T I A L

TABLE OF
CONTENTS

02. Creating Hi-res Vision

03. How to support multiple game engines?

04. Going further: geomorphing and future work

05. Conclusion & takeaway

01. Why use virtualized geometry?

45

V I R T U O S C O N F I D E N T I A L

GOING FURTHER:
GEOMORPHING AND
FUTURE WORK

I’m going to finish this presentation with our current work in progress.

46

V I R T U O S C O N F I D E N T I A L

Geomorphing

Smooth transition

between LODs

We are currently working on geomorphing.
What is geomorphing?
It’s simply a smooth transition between LODs.

47

V I R T U O S C O N F I D E N T I A L

Geomorphing

Transition LOD when
triangles are extremely small

Lots of triangles

Bad performance because GPU are
not designed to handle this

Software rasterizer
to get good performance

Smooth transition between LODs
(geomorphing)

Transition when triangles are larger
(e.g., 5 pixels instead of 1 or 0.5)

Good performance with classical
rendering architecture

Minimize popping

Too many changes in rendering engine
Almost impossible to be compatible with multiple engines

What can geomorphing be useful for?
One challenge we have is to minimize popping when switching from LOD to another.
One possible solution is to transition between LODs when triangles are very small,
typically smaller than one pixel.
The drawback is that we have a lot of triangles, which is bad for performance.
A solution is to implement a software rasterizer.
We didn’t go this way because it has a big impact on the rendering engine, and it
would be very difficult to have an implementation that is compatible with multiple
game engines.
Another possibility is to have smooth transition between LODs, which is exactly what
geomorphing does, and switch from LOD to another when triangles are larger, for
example 4 or 5 pixels instead of 1 or less than 1.
We did some tests: there is no quality increase when using 1-pixel triangles compared
to 5-pixel triangles.

48

V I R T U O S C O N F I D E N T I A L

Future work

Foliage support Animated mesh support

Our R&D team is also working on foliage support, which isn’t too difficult, and
animated mesh support, which is a bigger challenge.

49

V I R T U O S C O N F I D E N T I A L

TABLE OF
CONTENTS

02. Creating Hi-res Vision

03. How to support multiple game engines?

04. Going further: geomorphing and future work

05. Conclusion & takeaway

01. Why use virtualized geometry?

50

V I R T U O S C O N F I D E N T I A L

CONCLUSION
AND
TAKEAWAY

What are the most relevant topics to remember?

51

V I R T U O S C O N F I D E N T I A L

Conclusion & takeaway

Virtualized geometry is becoming standard

Chunk
creation

Graph
buildingDecimationCluster

creation

• METIS is your friend, don’t reinvent the wheel

• Quite complex algorithms to implement

• The quality of the decimation is key

• Expect a *long* tweaking phase to get good results

• Mesh build times are important

Builder stage

I do believe than virtualized geometry is becoming standard in video games.
I’m recalling here the different steps of the builder stage: cluster creation,
decimation, graph building, and chunk creation.
METIS is a very powerful library, it’s open source, use it when you need it.
The algorithms of Builder stage are not so easy to implement, it can take a long time
to achieve a good quality for LODs, with a lot of specific cases to handle.
And a point I didn’t mention yet: the time to build meshes can be significant.

52

V I R T U O S C O N F I D E N T I A L

Conclusion & takeaway (cont’d)

• Classical LRU algorithm easy to write
• Things become more complex when dealing with priorities

• Naïve implementation quite easy to write
• Optimized version took a much longer time

• We will disclose our results when available

Rendering

Streaming

Geomorphing, foliage, animated mesh

For the rendering stage, a simple implementation is not so difficult to write, the
challenge is more to get an optimized version.
As for the streaming part, a LRU algorithm gives good results, but managing priorities
is more complex.
About our current work, we will disclose our results when they are available.
Stay tune!

53

V I R T U O S C O N F I D E N T I A L

References

[1] R. Li, « A lightweight 3D viewer: real-time rendering of multi-scale 3D surface models ».

[2] A. Beacco, N. Pelechano, et C. Andújar, « A Survey of Real‐Time Crowd Rendering », Computer Graphics Forum, vol. 35, nᵒ 8, p.
32-50, déc. 2016, doi: 10.1111/cgf.12774.

[3] A. E. W. Mason et E. H. Blake, « Automatic Hierarchical Level of Detail Optimization in Computer Animation », 1997.

[4] E. Danovaro, L. De Floriani, E. Puppo, et H. Samet, « Clustering Techniques for Out-of-Core Multi-resolution Modeling », in IEEE
Visualization 2005 - (VIS’05), Minneapolis, MN, USA: IEEE, 2005, p. 113-113. doi: 10.1109/VIS.2005.15.

[5] V. Semenov, V. Shutkin, et V. Zolotov, « Conservative Out-of-Core Rendering of Large Dynamic Scenes Using HDLODs », in
Proceedings of the 31th International Conference on Computer Graphics and Vision. Volume 2, Keldysh Institute of Applied
Mathematics, 2021, p. 105-115. doi: 10.20948/graphicon-2021-3027-105-115.

[6] Y. Zhang et X. Chen, « Constructing and Rendering of Multiresolution Representation for Massive Meshes with GPU and Mesh
Layout », JSW, vol. 8, nᵒ 8, p. 1968-1975, août 2013, doi: 10.4304/jsw.8.8.1968-1975.

[7] H. Hoppe et S. Marschner, « Efficient Minimization of New Quadric Metric for Simplifying Meshes with Appearance Attributes ».

[8] H. Legrand, J. Thiery, et T. Boubekeur, « Filtered Quadrics for High‐Speed Geometry Smoothing and Clustering », Computer Graphics
Forum, vol. 38, nᵒ 1, p. 663-677, févr. 2019, doi: 10.1111/cgf.13597.

[9] C. Zach, « Integration of geomorphing into level of detail management for realtime rendering », in Proceedings of the 18th Spring
Conference on Computer Graphics, Budmerice Slovakia: ACM, avr. 2002, p. 115-122. doi: 10.1145/584458.584478.

[10] G. Debunne, M. Desbrun, A. Barr, et M.-P. Cani, « Interactive multiresolution animation of deformable models », in Computer
Animation and Simulation ’99, N. Magnenat-Thalmann et D. Thalmann, Éd., in Eurographics. , Vienna: Springer Vienna, 1999, p.
133-144. doi: 10.1007/978-3-7091-6423-5_13.

I put here a list of papers that we read or we used to build our technology.

54

V I R T U O S C O N F I D E N T I A L

References (cont’d)

[11] E. Danovaro, L. De Floriani, P. Magillo, E. Puppo, et D. Sobrero, « Level-of-detail for data analysis and exploration: A historical
overview and some new perspectives », Computers & Graphics, vol. 30, nᵒ 3, p. 334-344, juin 2006, doi: 10.1016/j.cag.2006.02.006.

[12] A. Dietrich, E. Gobbetti, et S.-E. Yoon, « Massive-Model Rendering Techniques », IEEE Computer Graphics and Applications, 2007.

[13] M. Wand et W. Straßer, « Multi-Resolution Rendering of Complex Animated Scenes ».

[14] S. Zhang et E. Wu, « Multiresolution Animated Models Generation Based on Deformation Distance Analysis », in 2009
International Conference on Computer Modeling and Simulation, Macau, China: IEEE, févr. 2009, p. 73-77. doi:
10.1109/ICCMS.2009.43.

[15] M. Garland, « Multiresolution Modeling: Survey & Future Opportunities ».

[16] H. Hoppe, « New quadric metric for simplifying meshes with appearance attributes », in Proceedings Visualization ’99 (Cat.
No.99CB37067), San Francisco, CA, USA: IEEE, 1999, p. 59-510. doi: 10.1109/VISUAL.1999.809869.

[17] Y. Zhang et D. Xu, « Parallel construction and rendering of multi-resolution representation for massive meshes with GPU », IFS, vol.
33, nᵒ 5, p. 3165-3172, oct. 2017, doi: 10.3233/JIFS-169368.

[18] H. Hoppe, « Progressive meshes ».

[19] J. Popović et H. Hoppe, « Progressive simplicial complexes », in Proceedings of the 24th annual conference on Computer graphics
and interactive techniques - SIGGRAPH ’97, Not Known: ACM Press, 1997, p. 217-224. doi: 10.1145/258734.258852.

[20] A. Ghazanfarpour, N. Mellado, C. E. Himeur, L. Barthe, et J.-P. Jessel, « Proximity-aware multiple meshes decimation using quadric
error metric », Graphical Models, vol. 109, p. 101062, mai 2020, doi: 10.1016/j.gmod.2020.101062.

[21] M. Garland et Y. Zhou, « Quadric-based simplification in any dimension », ACM Trans. Graph., vol. 24, nᵒ 2, p. 209-239, avr. 2005,
doi: 10.1145/1061347.1061350.

55

V I R T U O S C O N F I D E N T I A L

References (cont’d)

[22] D. L. James,Twigg Christopher D., « Skinning Mesh Animations ». 2005.

[23] H. Hoppe, « Smooth view-dependent level-of-detail control and its application to terrain rendering », in Proceedings Visualization
’98 (Cat. No.98CB36276), Research Triangle Park, NC, USA: IEEE, 1998, p. 35-42,. doi: 10.1109/VISUAL.1998.745282.

[24] E. Gobbetti et E. Bouvier, « Time-critical multiresolution rendering of large complex models », Computer-Aided Design, vol. 32, nᵒ
13, p. 785-803, nov. 2000, doi: 10.1016/S0010-4485(00)00068-3.

[25] Xinyue Li et Han-Wei Shen, « Time-critical multiresolution volume rendering using 3D texture mapping hardware », in Symposium
on Volume Visualization and Graphics, 2002. Proceedings. IEEE / ACM SIGGRAPH, Boston, MA, USA: IEEE, 2002, p. 29-36. doi:
10.1109/SWG.2002.1226507.

[26] Yuanchen Zhu, « Uniform Remeshing with an Adaptive Domain: A New Scheme for View-Dependent Level-of-Detail Rendering of
Meshes », IEEE Trans. Visual. Comput. Graphics, vol. 11, nᵒ 3, p. 306-316, mai 2005, doi: 10.1109/TVCG.2005.50.

[27] R. Li, « View-dependent Adaptive HLOD: real-time interactive rendering of multi-resolution models », 2023.

[28] H. Chen, S. Zhan, Y. Gao, et W. Zhang, « View-Dependent Out-of-Core Rendering of Large-Scale Virtual Environments with
Continuous Hierarchical Levels of Detail », in 2008 International Conference on Computer Science and Information Technology, IEEE,
août 2008, p. 313-321. doi: 10.1109/ICCSIT.2008.192.

[29] Junho Kim, Seungyong Lee, et L. Kobbelt, « View-dependent streaming of progressive meshes », in Proceedings Shape Modeling
Applications, 2004., Genova, Italy: IEEE, 2004, p. 209-391. doi: 10.1109/SMI.2004.1314508.

56

V I R T U O S C O N F I D E N T I A L

Maximizing Graphics Performance
with Flexible Virtualized Geometry

THANK YOU
Marios Michaelides

Engineering BU Director

mmichaelides@virtuosgames.com

Alexis Vaisse

Senior Technical Director

avaisse@virtuosgames.com

57

	Diapositive 1
	Diapositive 2
	Diapositive 3
	Diapositive 4
	Diapositive 5
	Diapositive 6
	Diapositive 7
	Diapositive 8
	Diapositive 9
	Diapositive 10
	Diapositive 11
	Diapositive 12
	Diapositive 13
	Diapositive 14
	Diapositive 15
	Diapositive 16
	Diapositive 17
	Diapositive 18
	Diapositive 19
	Diapositive 20
	Diapositive 21
	Diapositive 22
	Diapositive 23
	Diapositive 24
	Diapositive 25
	Diapositive 26
	Diapositive 27
	Diapositive 28
	Diapositive 29
	Diapositive 30
	Diapositive 31
	Diapositive 32
	Diapositive 33
	Diapositive 34
	Diapositive 35
	Diapositive 36
	Diapositive 37
	Diapositive 38
	Diapositive 39
	Diapositive 40
	Diapositive 41
	Diapositive 42
	Diapositive 43
	Diapositive 44
	Diapositive 45
	Diapositive 46
	Diapositive 47
	Diapositive 48
	Diapositive 49
	Diapositive 50
	Diapositive 51
	Diapositive 52
	Diapositive 53
	Diapositive 54
	Diapositive 55
	Diapositive 56
	Diapositive 57

