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Overview

» Averaging and Blending
» Interpolation
» Parametric Equations
» Parametric Curves and Splines

including:
Bezier splines (linear, quadratic, cubic)
Cubic Hermite splines
Catmull-Rom splines
Cardinal splines
Kochanek–Bartels splines
B-splines



Averaging and Blending



Averaging and Blending

» First, we start off with the basics.
» I mean, really basic.
» Let’s go back to grade school.

» How do you average two numbers together?

(A + B) / 2



Averaging and Blending

» Let’s change that around a bit.

(A + B) / 2

becomes

(.5 * A) + (.5 * B)

i.e. “half of A, half of B”, or “a blend of A and B”



» We can, of course, also blend A and B unevenly 
(with different weights):

(.35 * A) + (.65 * B)

» In this case, we are blending “35% of A with 
65% of B”.

» Can use any blend weights we want, as long as 
they add up to 1.0 (100%).

Averaging and Blending



» Like making up a bottle of liquid by 
mixing two different fluids together.

(we always fill the glass 100%)

Averaging and Blending



Averaging and Blending

» So if we try to generalize here, we could say:

(s * A) + (t * B)

» ...where s is “how much of A” we want, and t is 
“how much of B” we want

» ...and s + t = 1.0     (really, s is just 1-t)

so: ((1-t) * A) + (t * B)

Which means we can control the balance of the 
entire blend by changing just one number: t



Averaging and Blending

» There are two ways of thinking about this (and a formula 
for each):

» #1: “Blend some of A with some of B”

(s * A) + (t * B)    where s = 1-t

» #2: “Start with A, and then add some amount of the 
distance from A to B”

A + t*(B – A)



Averaging and Blending

» In both cases, the result of our blend is 
just plain “A” if t=0;

i.e. if we don’t want any of B.

(1.00 * A) + (0.00 * B) = A

or: A + 0.00*(B – A) = A



Averaging and Blending

» Likewise, the result of our blend is just 
plain “B” if t=1; i.e. if we don’t want any 
of A.

(0.00 * A) + (1.00 * B)  = B

or: A + 1.00*(B – A)       =
A + B – A = B



Averaging and Blending

» However we choose to think about it, there’s a 
single “knob”, called t, that we are tweaking 
to get the blend of A and B that we want.



Blending Compound Data



Blending Compound Data

» We can blend more than just numbers.

» Blending 2D and 3D vectors, for example, is a cinch:

» Just blend each component (x,y,z) separately, at the 
same time.

P = (s * A) + (t * B)    where s = 1-t

is equivalent to:

Px = (s * Ax) + (t * Bx)
Py = (s * Ay) + (t * By)
Pz = (s * Az) + (t * Bz)



Blending Compound Data
(such as Vectors)
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(such as Vectors)



Blending Compound Data

» Need to be careful, though!

» Not all compound data types will blend 
correctly with this sort of (blend-the-
components) approach.

» Examples: Color RGBs, Euler angles 
(yaw/pitch/roll), Matrices, Quaternions...

...in fact, there are a bunch that won’t.



Blending Compound Data

» Here’s an RGB color example:

» If A is RGB( 255, 0, 0 ) – bright red
...and B is RGB( 0, 255, 0 ) – bright 

green

» Blending the two (with t = 0.5) gives:
RGB( 127, 127, 0 )

...which is a dull, swampy color.  Yuck.



Blending Compound Data

» What we wanted was this:

...and what we got instead was this:



Blending Compound Data

» For many compound classes, like RGB, 
you may need to write your own 
Interpolate() method that “does the 
right thing”, whatever that may be.

» Jim will talk later about what happens 
when you try to interpolate Euler 
Angles (yaw/pitch/roll), Matrices, and 
Quaternions using this simple “naive” 
approach of blending the components.



Interpolation



Interpolation

» Interpolation is just changing blend 
weights over time.  Also called “Lerp”.

» i.e. Turning the knob (t) progressively, 
not just setting it to some position.

» Often we crank slowly from t=0 to t=1.



Interpolation

» Since games are generally frame-based, we 
usually have some Update() method that gets 
called, in which we have to decide what we’re 
supposed to look like at this instant in time.

» There are two main ways of approaching this 
when we’re interpolating:

» #1: Blend from A to B over the course of 
several frames (parametric evaluation);

» #2: Blend one step from wherever-I’m-at now 
to wherever-I’m-going (numerical 
integration).



Interpolation

» Games generally need to use both.

» Most physics tends to use method #2 
(numerical integration).  Erin will talk 
more about this at the end of the day.

» Many other systems, however, use 
method #1 (parametric evaluation).

(More on that in a moment)



Interpolation

» We use “lerping”
all the time, under
different names.

For example:

» an Audio crossfade
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Interpolation

» We use “lerping”
all the time, under
different names.

For example:

» an Audio crossfade
» fading up lights
» or this cheesy

PowerPoint effect.



Interpolation

Basically, whenever we do any sort of 
blend over time, we’re lerping.



Implicit Equations

Sweetness...

I loves me some math!

“That’s my cue to go get a margarita.”
-Squirrel’s wife



Implicit Equations

Implicit equations define what is, and isn’t,
included in a set of points (a “locus”).



Implicit Equations

If the equation is TRUE for some x and y,
then the point (x,y) is included on the line.



Implicit Equations

If the equation is FALSE for some x and y,
then the point (x,y) is NOT included on the line.



Implicit Equations

Here, the equation X2 + Y2 = 25 defines a
“locus” of all the points within 5 units of the origin.



Implicit Equations

If the equation is TRUE for some x and y,
then the point (x,y) is included on the circle.



Implicit Equations

If the equation is FALSE for some x and y,
then the point (x,y) is NOT included on the circle.



Parametric Equations

» A parametric equation is one that has been rewritten 
so that it has one clear “input” parameter (variable) 
that everything else is based in terms of.

» In other words, a parametric equation is basically 
anything you can hook up to a single knob.  It’s a 
formula that you can feed in a single number (the 
“knob” value, “t”, usually from 0 to 1), and the formula 
gives back the appropriate value for that particular “t”.

Think of it as a function that takes a float and returns... 
whatever (a position, a color, an orientation, etc.):

someComplexData ParametricEquation( float t );



Parametric Equations

» Essentially:

P(t) = some formula with “t” in it

...as t changes, P changes
(P depends upon t)

P(t) can return any kind of value; whatever we want 
to interpolate, for instance.

Position (2D, 3D, etc.)
Orientation
Scale
Alpha
etc.



Parametric Equations

Example:  P(t) is a 2D position...
Pick some value of t, plug it in, see where P is!
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Parametric Equations

Example:  P(t) is a 2D position...
Pick some value of t, plug it in, see where P is!



Parametric Curves



Parametric Curves

Parametric curves are curves that are defined
using parametric equations.



Parametric Curves

Here’s the basic idea:

We go from t=0 at A (start) to t=1 at B (end)



Parametric Curves

Set the knob to 0, and crank it towards 1



Parametric Curves

As we turn the knob, we keep plugging the latest t 
into the curve equation to find out where P is now



Parametric Curves

Note: All parametric curves are directional; i.e.
they have a start & end, a forward & backward



Parametric Curves

So that’s the basic idea.

Now how do we actually do it?



Bezier Curves



Linear Bezier Curves

Bezier curves are the easiest kind to understand.

The simplest kind of Bezier curves are
Linear Bezier curves.

They’re so simple, they’re not even curvy!



Linear Bezier Curves

P = ((1-t) * A) + (t * B)   // weighted average

or, as I prefer to write it:

P = (s * A) + (t * B)    where s = 1-t
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Linear Bezier Curves

P = ((1-t) * A) + (t * B)   // weighted average

or, as I prefer to write it:

P = (s * A) + (t * B)    where s = 1-t



Linear Bezier Curves

So, for t = 0.75 (75% of the way from A to B):

P = ((1-t) * A) + (t * B)
or

P = (.25 * A) + (.75 * B)



Linear Bezier Curves

So, for t = 0.75 (75% of the way from A to B):

P = ((1-t) * A) + (t * B)
or

P = (.25 * A) + (.75 * B)



Linear Bezier Curves

Here it is in motion (thanks, internet!)

A

B



Quadratic Bezier Curves



Quadratic Bezier Curves

A Quadratic Bezier curve is just a blend 
of two Linear Bezier curves.

The word “quadratic” means that if we 
sniff around the math long enough, 

we’ll see t2.  (In our Linear Beziers we 
saw t and 1-t, but never t2).



Quadratic Bezier Curves

» Three control points: A, B, and C
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» Three control points: A, B, and C
» Two different Linear Beziers: AB and BC



Quadratic Bezier Curves

» Three control points: A, B, and C
» Two different Linear Beziers: AB and BC
» Instead of “P”, using “E” for AB and “F” for BC



Quadratic Bezier Curves

» Interpolate E along AB as we turn the knob
» Interpolate F along BC as we turn the knob
» Move E and F simultaneously – only one “t”!
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Quadratic Bezier Curves

» Interpolate E along AB as we turn the knob
» Interpolate F along BC as we turn the knob
» Move E and F simultaneously – only one “t”!



Quadratic Bezier Curves

» Now let’s turn the knob again...
(from t=0 to t=1)

but draw a line between E and F as they move.
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Quadratic Bezier Curves

» Now let’s turn the knob again...
(from t=0 to t=1)

but draw a line between E and F as they move.



Quadratic Bezier Curves

» This time, we’ll also interpolate P from E to F
...using the same “t” as E and F themselves

» Watch where P goes!
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Quadratic Bezier Curves

» This time, we’ll also interpolate P from E to F
...using the same “t” as E and F themselves

» Watch where P goes!



Quadratic Bezier Curves

» Note that mathematicians use
P0, P1, P2 instead of  A, B, C

» I will keep using A, B, C here for simplicity

A

B

C



Quadratic Bezier Curves

» We know P starts at A, and ends at C
» It is clearly influenced by B...

...but it never actually touches B

A

B

C



Quadratic Bezier Curves

» B is a guide point of this curve; drag 
it around to change the curve’s contour.
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» B is a guide point of this curve; drag 
it around to change the curve’s contour.



Quadratic Bezier Curves

» B is a guide point of this curve; drag 
it around to change the curve’s contour.



Quadratic Bezier Curves

» By the way, this is also that thing you were 
drawing in junior high when you were bored.

(when you weren’t drawing D&D maps, that is)



Quadratic Bezier Curves

» By the way, this is also that thing you were 
drawing in junior high when you were bored.

(when you weren’t drawing D&D maps, that is)

A

B C



Quadratic Bezier Curves

» BONUS: This is also how they make
True Type Fonts look nice and curvy.



Quadratic Bezier Curves

» Remember:

A Quadratic Bezier curve is just a blend 
of two Linear Bezier curves.

So the math is still pretty simple.

(Just a blend of two Linear Bezier 
equations.)



Quadratic Bezier Curves

» E(t) = (s * A) + (t * B)  where  s = 1-t
» F(t) = (s * B) + (t * C)
» P(t) = (s * E) + (t * F)  technically E(t) and F(t) here



Quadratic Bezier Curves

» E(t) = sA + tB  where  s = 1-t
» F(t) = sB + tC
» P(t) = sE + tF technically E(t) and F(t) here



Quadratic Bezier Curves

» Hold on!  You said “quadratic” meant we’d see 
a t2 in there somewhere.

» E(t) = sA + tB
» F(t) = sB + tC
» P(t) = sE(t) + tF(t)

» P(t) is an interpolation from E(t) to F(t)
» When you plug the E(t) and F(t) equations 

into the P(t) equation, you get...



Quadratic Bezier Curves

» One equation to rule them all:

P(t) = sE(t) + tF(t)
or

P(t) = s( sA + tB ) + t( sB + tC )
or

P(t) = (s2)A + (st)B + (st)B + (t2)C
or

P(t) = (s2)A + 2(st)B + (t2)C
(BTW, there’s our “quadratic” t2)



Quadratic Bezier Curves

» What if t = 0 ? (at the start of the curve)

so then...   s = 1

P(t) = (s2)A + 2(st)B + (t2)C
becomes

P(t) = (12)A + 2(1*0)B + (02)C
becomes

P(t) = (1)A + 2(0)B + (0)C
becomes

P(t) = A



Quadratic Bezier Curves

» What if t = 1 ? (at the end of the curve)

so then...   s = 0

P(t) = (s2)A + 2(st)B + (t2)C
becomes

P(t) = (02)A + 2(0*1)B + (12)C
becomes

P(t) = (0)A + 2(0)B + (1)C
becomes

P(t) = C



Quadratic Bezier Curves

» What if t = 0.5 ?  (halfway through the curve)

so then...   s = 0.5 also

P(t) = (s2)A + 2(st)B + (t2)C
becomes

P(t) = (0.52)A + 2(0.5*0.5)B + (0.52)C
becomes

P(t) = (0.25)A + 2(0.25)B + (.25)C
becomes

P(t) = .25A + .50B + .25C



Quadratic Bezier Curves

» If we say M is the midpoint of the line 
AC...



Quadratic Bezier Curves

» If we say M is the midpoint of the line 
AC...



Quadratic Bezier Curves

» And H is the halfway point on the curve
(where t = 0.5 )



Quadratic Bezier Curves

» Then H is also halfway from M to B



Quadratic Bezier Curves

» So, let’s say that we’d rather drag the 
halfway point (H) around than B.

(maybe because H is on the curve itself)



Quadratic Bezier Curves

» So now we know H, but not B.
(and we also know A and C)



Quadratic Bezier Curves

» Start by computing M (midpoint of AC):
M = .5A + .5C



Quadratic Bezier Curves

» Compute MH (H – M)



Quadratic Bezier Curves

» Add MH to H to get B
B = H + MH (or 2H – M)



Quadratic Bezier Curves

» This is what programs like Visio do 
when you drag curve points, BTW.



Non-uniformity
» Be careful: most curves are not 

uniform; that is, they have variable 
“density” or “speed” throughout them.



Cubic Bezier Curves



Cubic Bezier Curves

A Cubic Bezier curve is just a blend of 
two Quadratic Bezier curves.

The word “cubic” means that if we sniff 
around the math long enough, we’ll see 
t3.  (In our Linear Beziers we saw t; in 

our Quadratics we saw t2).



Cubic Bezier Curves

» Four control points: A, B, C, and D
» 2 different Quadratic Beziers: ABC and BCD
» 3 different Linear Beziers: AB, BC, and CD



Cubic Bezier Curves

» As we turn the knob (one knob, one “t” for everyone):
Interpolate E along AB // all three lerp simultaneously

Interpolate F along BC // all three lerp simultaneously

Interpolate G along CD // all three lerp simultaneously
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Cubic Bezier Curves
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Cubic Bezier Curves

» Also:
Interpolate Q along EF // lerp simultaneously with E,F,G

Interpolate R along FG // lerp simultaneously with E,F,G
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Cubic Bezier Curves

» Also:
Interpolate Q along EF // lerp simultaneously with E,F,G

Interpolate R along FG // lerp simultaneously with E,F,G



Cubic Bezier Curves

» And finally:
Interpolate P along QR

(simultaneously with E,F,G,Q,R)

» Again, watch where P goes!
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Cubic Bezier Curves

» And finally:
Interpolate P along QR

(simultaneously with E,F,G,Q,R)

» Again, watch where P goes!



Cubic Bezier Curves

A

B C

D

» Now P starts at A, and ends at D
» It never touches B or C...

since they are guide points



Cubic Bezier Curves

» Remember:

A Cubic Bezier curve is just a blend of two 
Quadratic Bezier curves.

Which are just a blend of 3 Linear Bezier 
curves.

So the math is still not too bad.

(A blend of blends of Linear Bezier equations.)



Cubic Bezier Curves

» E(t) = sA + tB where  s = 1-t
» F(t) = sB + tC
» G(t) = sC + tD



Cubic Bezier Curves

» And then Q and R interpolate those results...
» Q(t) = sE + tF
» R(t) = sF + tG



Cubic Bezier Curves

» And lastly P interpolates from Q to R

» P(t) = sQ + tR



Cubic Bezier Curves

» E(t) = sA + tB // Linear Bezier (blend of A and B)

» F(t) = sB + tC // Linear Bezier (blend of B and C)

» G(t) = sC + tD // Linear Bezier (blend of C and D)

» Q(t) = sE + tF // Quadratic Bezier (blend of E and F)

» R(t) = sF + tG // Quadratic Bezier (blend of F and G)

» P(t) = sQ + tR // Cubic Bezier (blend of Q and R)

» Okay!  So let’s combine these all together...



Cubic Bezier Curves

» Do some hand-waving mathemagic 
here...

...and we get one equation to 
rule them all:

P(t) = (s3)A + 3(s2t)B + 3(st2)C + (t3)D

(BTW, there’s our “cubic” t3)



Cubic Bezier Curves

» Let’s compare the three Bezier 
equations (Linear, Quadratic, Cubic):

P(t) = (s)A + (t)B
P(t) = (s2)A + 2(st)B + (t2)C
P(t) = (s3)A + 3(s2t)B + 3(st2)C + (t3)D

» There’s some nice symmetry here...



Cubic Bezier Curves

» Write in all of the numeric coefficients...
» Express each term as powers of s and t

P(t)= 1(s1t0)A + 1(s0t1)B
P(t)= 1(s2t0)A + 2(s1t1)B + 1(s0t2)C
P(t)= 1(s3t0)A + 3(s2t1)B + 3(s1t2)C + 1(s0t3)D



Cubic Bezier Curves

» Write in all of the numeric coefficients...
» Express each term as powers of s and t

P(t)= 1(s1t0)A + 1(s0t1)B
P(t)= 1(s2t0)A + 2(s1t1)B + 1(s0t2)C
P(t)= 1(s3t0)A + 3(s2t1)B + 3(s1t2)C + 1(s0t3)D

» Note: “s” exponents count down



Cubic Bezier Curves

» Write in all of the numeric coefficients...
» Express each term as powers of s and t

P(t)= 1(s1t0)A + 1(s0t1)B
P(t)= 1(s2t0)A + 2(s1t1)B + 1(s0t2)C
P(t)= 1(s3t0)A + 3(s2t1)B + 3(s1t2)C + 1(s0t3)D

» Note: “s” exponents count down
» Note: “t” exponents count up



Cubic Bezier Curves

» Write in all of the numeric coefficients...
» Express each term as powers of s and t

P(t)= 1(s1t0)A + 1(s0t1)B
P(t)= 1(s2t0)A + 2(s1t1)B + 1(s0t2)C
P(t)= 1(s3t0)A + 3(s2t1)B + 3(s1t2)C + 1(s0t3)D

» Note: numeric coefficients are from Pascal’s 
Triangle...



Cubic Bezier Curves

» What if t = 0.5 ?  (halfway through the curve)
so then...   s = 0.5 also

P(t) = (s3)A + 3(s2t)B + 3(st2)C + (t3)D
becomes

P(t) = (.53)A + 3(.52*.5)B + 3(.5*.52)C + (.53)D
becomes

P(t) = (.125)A + 3(.125)B + 3(.125)C + (.125)D
becomes

P(t) = .125A + .375B + .375C + .125D



Cubic Bezier Curves

» Cubic Bezier Curves can also be “S-shaped”, if 
their control points are “twisted” as pictured 
here.



Cubic Bezier Curves

» Cubic Bezier Curves can also be “S-shaped”, if 
their control points are “twisted” as pictured 
here.



Cubic Bezier Curves

» They can also loop back around in extreme 
cases.



Cubic Bezier Curves

» They can also loop back around in extreme 
cases.



Seen in lots of places:

» Photoshop
» GIMP
» PostScript
» Flash
» AfterEffects
» 3DS Max
» Metafont

» Understable Disc Golf flight 
path, from above

Cubic Bezier Curves



Splines



Splines

» Okay, enough of Curves already.

» So... what’s a Spline?



Splines

A spline is a chain of curves joined end-to-end.
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Splines

A spline is a chain of curves joined end-to-end.



Splines

» Curve end/start points (welds) are knots



Splines

» Think of two different ts:

spline’s t:  Zero at start of spline, keeps 
increasing until the end of the spline chain

local curve’s t:  Resets to 0 at start of 
each curve (at each knot).

» Conventionally, the local curve’s t is
fmod( spline_t, 1.0 )



Splines

For a spline of 4 curve-pieces:

» Interpolate spline_t from 0.0 to 4.0

» If spline_t is 2.67, then we are:
67% through this curve (local_t = .67)
In the third curve section (0,1,2,3)

» Plug local_t into third curve equation



Splines

» Interpolating spline_t from 0.0 to 4.0...



Splines

» Interpolating spline_t from 0.0 to 4.0...



Splines

» Interpolating spline_t from 0.0 to 4.0...



Splines
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Splines

» Interpolating spline_t from 0.0 to 4.0...



Splines

» Interpolating spline_t from 0.0 to 4.0...



Splines

» Interpolating spline_t from 0.0 to 4.0...



Splines

» Interpolating spline_t from 0.0 to 4.0...



Splines

» Interpolating spline_t from 0.0 to 4.0...



Quadratic Bezier Splines

» This spline is a quadratic Bezier spline,
since it is made out of
quadratic Bezier curves



Continuity

» Good continuity (C1); 
connected and
aligned

» Poor continuity (C0); 
connected but not 
aligned



Continuity

» To ensure good continuity (C1), make BC of first 
curve colinear (in line with) AB of second curve.

(derivative is continuous across entire spline)



Continuity

» Excellent continuity (C2) is when speed/density 
matches on either side of each knot.

(second derivative is continuous across entire spline)



Cubic Bezier Splines

» We can build a cubic Bezier spline instead 
by using cubic Bezier curves.
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Cubic Bezier Splines

» We can build a cubic Bezier spline instead 
by using cubic Bezier curves.



Cubic Hermite Splines



Cubic Hermite Splines

» A cubic Hermite spline is very similar to a 
cubic Bezier spline.



Cubic Hermite Splines
» However, we do not specify the B and C guide points.
» Instead, we give the velocity at point A (as U), and the 

velocity at D (as V) for each cubic Hermite curve.

U

V



Cubic Hermite Splines
» To ensure connectedness (C0), D from curve #0 is 

again welded on top of A from curve #1 (at a knot).



Cubic Hermite Splines
» To ensure smoothness (C1), velocity into D (V) must 

match velocity’s direction out of the next curve’s A (U).



Cubic Hermite Splines
» For best continuity (C2), velocity into D (V) must match 

direction and magnitude for the next curve’s A (U).
(Hermite splines usually do match velocity magnitudes)



Cubic Hermite Splines

» Hermite curves, and Hermite splines, are also 
parametric and work basically the same way 
as Bezier curves: plug in “t” and go!

» The formula for cubic Hermite curve is:

P(t) = s2(1+2t)A + t2(1+2s)D + s2tU + st2V



Cubic Hermite Splines
» Cubic Hermite and Bezier curves can be 

converted back and forth.

» To convert from cubic Hermite to Bezier:

B = A + (U/3)
C = D – (V/3)

» To convert from cubic Bezier to Hermite:

U = 3(B – A)
V = 3(D – C)



Catmull-Rom Splines



Catmull-Rom Splines

» A Catmull-Rom spline is just a cubic 
Hermite spline with special values chosen for 
the velocities at the start (U) and end (V) 
points of each section.

» You can also think of Catmull-Rom not as a 
type of spline, but as a technique for building 
cubic Hermite splines.

» Best application: curve-pathing through points



Catmull-Rom Splines

» Start with a series of points (spline start, 
spline end, and interior knots)



Catmull-Rom Splines

» 1. Assume U and V velocities are zero at start 
and end of spline (points 0 and 6 here).



Catmull-Rom Splines

» 2. Compute a vector from point 0 to point 2.
(Vec0_to_2 = P2 – P0)



Catmull-Rom Splines

» That will be our tangent for point 1.



Catmull-Rom Splines

» 3. Set the velocity for point 1 to be ½ of that.



Catmull-Rom Splines

» Now we have set positions 0 and 1, and 
velocities at points 0 and 1.  Hermite curve!



Catmull-Rom Splines

» 4. Compute a vector from point 1 to point 3.
(Vec1_to_3 = P3 – P1)



Catmull-Rom Splines

» That will be our tangent for point 2.



Catmull-Rom Splines

» 5. Set the velocity for point 2 to be ½ of that.



Catmull-Rom Splines

» Now we have set positions and velocities for 
points 0, 1, and 2.  We have a Hermite spline!



Catmull-Rom Splines

» Repeat the process to compute velocity at 
point 3.



Catmull-Rom Splines

» Repeat the process to compute velocity at 
point 3.



Catmull-Rom Splines

» And at point 4.



Catmull-Rom Splines

» And at point 4.



Catmull-Rom Splines

» Compute velocity for point 5.



Catmull-Rom Splines

» Compute velocity for point 5.



Catmull-Rom Splines

» We already set the velocity for point 6 to be 
zero, so we can close out the spline.



Catmull-Rom Splines

» And voila!  A Catmull-Rom (Hermite) spline.



Catmull-Rom Splines

Here’s the math for a Catmull-Rom Spline:

» Place knots where you want them (A, D, etc.)
» Position at the Nth point is PN

» Velocity at the Nth point is VN

» VN = (PN+1 – PN-1) / 2

» i.e. Velocity at point P is half of [the vector 
pointing from the previous point to the next 
point].



Cardinal Splines



Cardinal Splines

» Same as a Catmull-Rom spline, but with an 
extra parameter: Tension.

» Tension can be set from 0 to 1.

» A tension of 0 is just a Catmull-Rom spline.

» Increasing tension causes the velocities at all 
points in the spline to be scaled down.



Cardinal Splines

» So here is a Cardinal spline with tension=0
(same as a Catmull-Rom spline)



Cardinal Splines

» So here is a Cardinal spline with tension=.5
(velocities at points are ½ of the Catmull-Rom)



Cardinal Splines

» And here is a Cardinal spline with tension=1
(velocities at all points are zero)



Cardinal Splines
Here’s the math for a Cardinal Spline:

» Place knots where you want them (A, D, etc.)
» Position at the Nth point is PN

» Velocity at the Nth point is VN

» VN = (1 – tension)(PN+1 – PN-1) / 2

» i.e. Velocity at point P is some fraction of
half of [the vector pointing from the previous 
point to the next point].

» i.e. Same as Catmull-Rom, but VN gets scaled 
down because of the (1 – tension) multiply.



Other Spline Types



Kochanek–Bartels Splines
» Same as a Cardinal spline (includes Tension), 

but with two extra tweaks (usually set on the 
entire spline):

Bias (from -1 to +1):
A zero bias leaves the velocity vector alone
A positive bias rotates the velocity vector to be more 
aligned with the point BEFORE this point
A negative bias rotates the velocity vector to be more 
aligned with the point AFTER this point

Continuity (from -1 to +1):
A zero continuity leaves the velocity vector alone
A positive continuity “poofs out” the corners
A negative continuity “sucks in / squares off” corners



B-Splines

» Stands for “basis spline”.
» Just a generalization of Bezier splines.
» The basic idea:

At any given time, P(t) is a weighted-
average blend of 2, 3, 4, or more points in 
its neighborhood.

» Equations are usually given in terms of 
the blend weights for each of the 
nearby points based on where t is at.



Curved Surfaces
» Way beyond the scope of this talk, but 

basically you can criss-cross splines 
and form 2d curved surfaces.



Thanks!



Feel free to contact me:

Squirrel Eiserloh
Director

TrueThought LLC

Squirrel@Eiserloh.net
Squirrel@TrueThought.com

mailto:Squirrel@Eiserloh.net
mailto:Squirrel@TrueThought.com
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