Jeann hetwork inspire www.GDConf.com

Game Developers Conference[®] March 23-27, 2009 Moscone Center, San Francisco

Interpolation and Splines

Squirrel Eiserloh Director TrueThought LLC

<u>Squirrel@Eiserloh.net</u> <u>Squirrel@TrueThought.com</u>

- » Averaging and Blending
- » Interpolation
- » Parametric Equations
- » Parametric Curves and Splines including:
 - Bezier splines (linear, quadratic, cubic)
 - Cubic Hermite splines
 - Catmull-Rom splines
 - Cardinal splines
 - & Kochanek–Bartels splines
 - B-splines

ea

www.GDConf.com

09

learn

- » First, we start off with the basics.
- » I mean, really basic.
- » Let's go back to grade school.
- » How do you average two numbers together?

» Let's change that around a bit.

(A + B) / 2

becomes

i.e. "half of A, half of B", or "a blend of A and B"

We can, of course, also blend A and B unevenly (with different weights):

- In this case, we are blending "35% of A with 65% of B".
- » Can use any blend weights we want, as long as they add up to 1.0 (100%).

» Like making up a bottle of liquid by mixing two different fluids together.

(we always fill the glass 100%)

» So if we try to generalize here, we could say:

(s * A) + (t * B)

- » ...where s is "how much of A" we want, and t is "how much of B" we want
- » ...and s + t = 1.0 (really, s is just 1-t)
- so: ((1-t) * A) + (t * B)

Which means we can control the balance of the entire blend by changing just one number: **t**

- There are two ways of thinking about this (and a formula for each):
- #1: "Blend some of A with some of B"

$$(s * A) + (t * B) \leftarrow where s = 1-t$$

#2: "Start with A, and then add some amount of the distance from A to B"

$$\mathbf{A} + \mathbf{t}^* (\mathbf{B} - \mathbf{A})$$

In both cases, the result of our blend is just plain "A" if t=0;

i.e. if we don't want **any** of **B**.

$$(1.00 * A) + (0.00 * B) = A$$

or: $A + 0.00^{*}(B - A) = A$

» Likewise, the result of our blend is just plain "B" if t=1; i.e. if we don't want any of A.

$$(0.00 * A) + (1.00 * B) = B$$

or: $A + 1.00^{*}(B - A) = B$ A + B - A = B

» However we choose to think about it, there's a single "knob", called t, that we are tweaking to get the blend of A and B that we want.

09

learn

- » We can blend more than just numbers.
- » Blending 2D and 3D vectors, for example, is a cinch:
- » Just blend each component (x,y,z) separately, at the same time.

$$\mathbf{P} = (\mathbf{s} * \mathbf{A}) + (\mathbf{t} * \mathbf{B}) \quad \leftarrow \text{ where } \mathbf{s} = 1 - t$$

is equivalent to:

$$P_{x} = (s * A_{x}) + (t * B_{x})$$
$$P_{y} = (s * A_{y}) + (t * B_{y})$$
$$P_{z} = (s * A_{z}) + (t * B_{z})$$

(such as Vectors)

(such as Vectors)

(such as Vectors)

(such as Vectors)

- » Need to be careful, though!
- » Not all compound data types will blend correctly with this sort of (blend-thecomponents) approach.
- » Examples: Color RGBs, Euler angles (yaw/pitch/roll), Matrices, Quaternions...

... in fact, there are a bunch that won't.

» Here's an RGB color example:

» If A is RGB(255, 0, 0) – bright red ...and B is RGB(0, 255, 0) – bright green

» Blending the two (with t = 0.5) gives:
RGB(127, 127, 0)

...which is a **dull**, **swampy color**. Yuck.

» What we **wanted** was this:

...and what we got instead was this:

- » For many compound classes, like RGB, you may need to write your own Interpolate() method that "does the right thing", whatever that may be.
- » Jim will talk later about what happens when you try to interpolate Euler Angles (yaw/pitch/roll), Matrices, and Quaternions using this simple "naive" approach of blending the components.

- Interpolation is just changing blend weights over time. Also called "Lerp".
- » i.e. Turning the knob (t) progressively, not just setting it to some position.
- » Often we crank slowly from t=0 to t=1.

www.GDConf.com

ea

ea

Interpolation

- Since games are generally frame-based, we usually have some Update() method that gets called, in which we have to decide what we're supposed to look like at this instant in time.
- There are two main ways of approaching this when we're interpolating:
- #1: Blend from A to B over the course of several frames (parametric evaluation);
- #2: Blend one step from wherever-I'm-at now to wherever-I'm-going (numerical integration).

» Games generally need to use both.

- » Most physics tends to use method #2 (numerical integration). Erin will talk more about this at the end of the day.
- » Many other systems, however, use method #1 (parametric evaluation). (More on that in a moment)

ea

 We use "lerping"
 all the time, under different names.

For example:

» an Audio crossfade

 We use "lerping"
 all the time, under different names.

For example:

- » an Audio crossfade
- » fading up lights

We use "lerping"
 all the time, under
 different names.

For example:

- » an Audio crossfade
- » fading up lights
- » or this cheesy

PowerPoint effect.

Basically, whenever we do any sort of **blend over time**, we're lerping.

"That's my cue to go get a margarita." -Squirrel's wife

Implicit Equations

Sweetness...

loves me some math!

Implicit equations define what is, and isn't, included in a set of points (a "locus").

If the equation is TRUE for some x and y, then the point (x,y) is included on the line.

If the equation is FALSE for some x and y, then the point (x,y) is NOT included on the line.

Here, the equation $X^2 + Y^2 = 25$ defines a "locus" of all the points within 5 units of the origin.

Implicit Equations

If the equation is TRUE for some x and y, then the point (x,y) is included on the circle.

Implicit Equations

If the equation is FALSE for some x and y, then the point (x,y) is NOT included on the circle.

Parametric Equations

- A parametric equation is one that has been rewritten so that it has one clear "input" parameter (variable) that everything else is based in terms of.
- In other words, a parametric equation is basically anything you can hook up to a single knob. It's a formula that you can feed in a single number (the "knob" value, "t", usually from 0 to 1), and the formula gives back the appropriate value for that particular "t".

Think of it as a function that takes a float and returns... whatever (a position, a color, an orientation, etc.):

someComplexData ParametricEquation(float t);

» Essentially:

P(t) = some formula with "t" in it

...as t changes, P changes (P depends upon t)

P(t) can return any kind of value; whatever we want to interpolate, for instance.

- Section (2D, 3D, etc.)
- Orientation
- Scale
- Alpha
- etc.

Example: P(t) is a 2D position... Pick some value of t, plug it in, see where P is!

Example: P(t) is a 2D position... Pick some value of t, plug it in, see where P is!

Example: P(t) is a 2D position... Pick some value of t, plug it in, see where P is!

Example: P(t) is a 2D position... Pick some value of t, plug it in, see where P is!

Example: P(t) is a 2D position... Pick some value of t, plug it in, see where P is!

Example: P(t) is a 2D position... Pick some value of t, plug it in, see where P is!

Example: P(t) is a 2D position... Pick some value of t, plug it in, see where P is!

Example: P(t) is a 2D position... Pick some value of t, plug it in, see where P is!

Parametric Curves

Parametric curves are curves that are defined using parametric equations.

Here's the basic idea:

We go from t=0 at A (start) to t=1 at B (end)

Set the knob to 0, and crank it towards 1

As we turn the knob, we keep plugging the latest t into the curve equation to find out where P is now

Note: All parametric curves are **directional**; i.e. they have a start & end, a forward & backward

So that's the basic idea.

Now how do we actually do it?

Bezier Curves

Bezier curves are the easiest kind to understand.

The simplest kind of Bezier curves are Linear Bezier curves.

They're so simple, they're not even curvy!

P = ((1-t) * A) + (t * B) // weighted average

or, as I prefer to write it:

 $P = (s * A) + (t * B) \leftarrow where s = 1-t$

P = ((1-t) * A) + (t * B) // weighted average

or, as I prefer to write it:

 $P = (s * A) + (t * B) \leftarrow where s = 1-t$

P = ((1-t) * A) + (t * B) // weighted average

or, as I prefer to write it:

 $P = (s * A) + (t * B) \leftarrow where s = 1-t$

Linear Bezier Curves t = .75

So, for $\mathbf{t} = \mathbf{0.75}$ (75% of the way from A to B):

P = ((1-t) * A) + (t * B) *Or* P = (.25 * A) + (.75 * B)

(A

So, for $\mathbf{t} = \mathbf{0.75}$ (75% of the way from A to B):

P = ((1-t) * A) + (t * B) *Or* P = (.25 * A) + (.75 * B)

Here it is in motion (thanks, internet!)

A Quadratic Bezier curve is just a **blend of two Linear** Bezier curves.

The word "quadratic" means that if we sniff around the math long enough, we'll see t². (In our Linear Beziers we saw t and 1-t, but never t²).

» Three control points: A, B, and C

- » Three control points: A, B, and C
- » Two different Linear Beziers: AB and BC

- » Three control points: A, B, and C
- » Two different Linear Beziers: AB and BC
- » Instead of "P", using "E" for AB and "F" for BC

- Interpolate E along AB as we turn the knob
- Interpolate F along BC as we turn the knob
- » Move E and F simultaneously only one "t"!

- » Interpolate E along AB as we turn the knob
- Interpolate F along BC as we turn the knob
- » Move E and F simultaneously only one "t"!

- » Interpolate E along AB as we turn the knob
- Interpolate F along BC as we turn the knob
- » Move E and F simultaneously only one "t"!

- » Interpolate E along AB as we turn the knob
- Interpolate F along BC as we turn the knob
- » Move E and F simultaneously only one "t"!

 Now let's turn the knob again... (from t=0 to t=1)
 but draw a line between E and F as they move.

 Now let's turn the knob again... (from t=0 to t=1)
 but draw a line between E and F as they move.

 Now let's turn the knob again... (from t=0 to t=1)
 but draw a line between E and F as they move.

 Now let's turn the knob again... (from t=0 to t=1)
 but draw a line between E and F as they move.

 Now let's turn the knob again... (from t=0 to t=1)
 but draw a line between E and F as they move.

This time, we'll also interpolate P from E to F ...using the same "t" as E and F themselves

» Watch where P goes!

This time, we'll also interpolate P from E to F ...using the same "t" as E and F themselves

» Watch where P goes!

This time, we'll also interpolate P from E to F ...using the same "t" as E and F themselves

» Watch where P goes!

This time, we'll also interpolate P from E to F ...using the same "t" as E and F themselves

» Watch where P goes!

This time, we'll also interpolate P from E to F ...using the same "t" as E and F themselves

» Watch where P goes!

» Note that mathematicians use
 P₀, P₁, P₂ instead of A, B, C
 » I will keep using A, B, C here for simplicity

» We know P starts at A, and ends at C

» It is clearly influenced by B...
...but it never actually touches B

» By the way, this is also that thing you were drawing in junior high when you were bored.

(when you weren't drawing D&D maps, that is)

» By the way, this is also that thing you were drawing in junior high when you were bored.

(when you weren't drawing D&D maps, that is)

» BONUS: This is also how they make True Type Fonts look nice and curvy.

09

ea

» Remember:

A Quadratic Bezier curve is just a **blend of two Linear** Bezier curves.

So the math is still pretty simple.

(Just a blend of two Linear Bezier equations.)

- » $E(t) = (s * A) + (t * B) \leftarrow where s = 1-t$
- » F(t) = (s * B) + (t * C)
- » $P(t) = (s * E) + (t * F) \leftarrow technically E(t) and F(t) here$

 \bullet E(t) = sA + tB

- F(t) = sB + tC
- P(t) = sE + tF

 \leftarrow where s = 1-t

 \leftarrow technically E(t) and F(t) here

- » Hold on! You said "quadratic" meant we'd see a t² in there somewhere.
- \gg E(t) = sA + tB
- F(t) = sB + tC
- **»** P(t) = sE(t) + tF(t)
- » P(t) is an interpolation from E(t) to F(t)
- When you plug the E(t) and F(t) equations into the P(t) equation, you get...

» One equation to rule them all:

```
P(t) = sE(t) + tF(t)

or

P(t) = s(sA + tB) + t(sB + tC)

or

P(t) = (s^{2})A + (st)B + (st)B + (t^{2})C

or

P(t) = (s^{2})A + 2(st)B + (t^{2})C

(BTW, there's our "quadratic" t<sup>2</sup>)
```


What if t = 0? (at the start of the curve) so then... s = 1

 $P(t) = (s^{2})A + 2(st)B + (t^{2})C$ becomes $P(t) = (1^{2})A + 2(1^{*}0)B + (0^{2})C$ becomes P(t) = (1)A + 2(0)B + (0)Cbecomes

P(t) = A

What if t = 1? (at the end of the curve) so then... s = 0

 $P(t) = (s^{2})A + 2(st)B + (t^{2})C$ becomes $P(t) = (0^{2})A + 2(0^{*}1)B + (1^{2})C$ becomes P(t) = (0)A + 2(0)B + (1)Cbecomes

P(t) = C

What if t = 0.5? (halfway through the curve) so then... s = 0.5 also

 $P(t) = (s^{2})A + 2(st)B + (t^{2})C$ becomes $P(t) = (0.5^{2})A + 2(0.5^{*}0.5)B + (0.5^{2})C$ becomes P(t) = (0.25)A + 2(0.25)B + (.25)Cbecomes P(t) = .25A + .50B + .25C

» If we say M is the midpoint of the line AC...

» If we say M is the midpoint of the line AC...

www.GDConf.com

Quadratic Bezier Curves

» And H is the halfway point on the curve (where t = 0.5)

www.GDConf.com

Quadratic Bezier Curves

» Then H is also halfway from M to B

ea

Quadratic Bezier Curves

» So, let's say that we'd rather drag the halfway point (H) around than B.

(maybe because H is on the curve itself)

So now we know H, but not B.
 (and we also know A and C)

» Start by computing **M** (midpoint of AC): M = .5A + .5C

» Compute MH (H – M)

Add MH to H to get B $B = H + MH \quad (or 2H - M)$

Quadratic Bezier Curves

» This is what programs like Visio do when you drag curve points, BTW.

www.GDConf.com

09

.ear

Non-uniformity

» Be careful: most curves are not uniform; that is, they have variable "density" or "speed" throughout them.

A Cubic Bezier curve is just a **blend of two Quadratic** Bezier curves.

The word "cubic" means that if we sniff around the math long enough, we'll see **t**³. (In our Linear Beziers we saw **t**; in our Quadratics we saw **t**²).

- » Four control points: A, B, C, and D
- » 2 different Quadratic Beziers: ABC and BCD
- » 3 different Linear Beziers: **AB**, **BC**, and **CD**

 As we turn the knob (one knob, one "t" for everyone): Interpolate E along AB // all three lerp simultaneously Interpolate F along BC // all three lerp simultaneously Interpolate G along CD // all three lerp simultaneously

 As we turn the knob (one knob, one "t" for everyone): Interpolate E along AB // all three lerp simultaneously Interpolate F along BC // all three lerp simultaneously Interpolate G along CD // all three lerp simultaneously

 As we turn the knob (one knob, one "t" for everyone): Interpolate E along AB // all three lerp simultaneously Interpolate F along BC // all three lerp simultaneously Interpolate G along CD // all three lerp simultaneously

 As we turn the knob (one knob, one "t" for everyone): Interpolate E along AB // all three lerp simultaneously Interpolate F along BC // all three lerp simultaneously Interpolate G along CD // all three lerp simultaneously

 As we turn the knob (one knob, one "t" for everyone): Interpolate E along AB // all three lerp simultaneously Interpolate F along BC // all three lerp simultaneously Interpolate G along CD // all three lerp simultaneously

» Also:

Interpolate **Q** along **EF** Interpolate **R** along **FG**

// lerp simultaneously with E,F,G
// lerp simultaneously with E,F,G

» Also:

Interpolate **Q** along **EF** Interpolate **R** along **FG**

» Also:

Interpolate **Q** along **EF** Interpolate **R** along **FG**

» Also:

Interpolate **Q** along **EF** Interpolate **R** along **FG**

» Also:

Interpolate **Q** along **EF** Interpolate **R** along **FG**

» And finally:

Interpolate **P** along **QR** (simultaneously with E,F,G,Q,R)

» Again, watch where P goes!

» And finally:

Interpolate **P** along **QR** (simultaneously with E,F,G,Q,R)

» Again, watch where P goes!

» And finally:

Interpolate **P** along **QR** (simultaneously with E,F,G,Q,R)

» Again, watch where P goes!

» And finally:

Interpolate **P** along **QR** (simultaneously with E,F,G,Q,R)

» Again, watch where P goes!

» And finally:

Interpolate **P** along **QR** (simultaneously with E,F,G,Q,R)

» Again, watch where P goes!

» Remember:

A Cubic Bezier curve is just a **blend of two Quadratic** Bezier curves.

Which are just a **blend of 3 Linear** Bezier curves.

So the math is still not too bad.

(A blend of blends of Linear Bezier equations.)

» $\mathbf{E}(t) = s\mathbf{A} + t\mathbf{B}$ \leftarrow where s = 1-t» F(t) = sB + tC**»** G(t) = SC + tD

- » And then **Q** and **R** interpolate those results...
- $\mathbf{w} \mathbf{Q}(t) = s\mathbf{E} + t\mathbf{F}$
- » $\mathbf{R}(t) = s\mathbf{F} + t\mathbf{G}$

» And lastly P interpolates from Q to R

P(t) = s**Q** + t**R**

- $\mathbf{E}(t) = S\mathbf{A} + t\mathbf{B}$
- » F(t) = sB + tC // Linear Bezier (blend of B and C)
- $\mathbf{G}(t) = \mathbf{SC} + t\mathbf{D}$ // Linear Bezier (blend of C and D)
- **»** Q(t) = sE + tF //Q
 - // Quadratic Bezier (blend of E and F)

// Linear Bezier (blend of A and B)

- » $\mathbf{R}(t) = \mathbf{SF} + t\mathbf{G}$ // Quadratic Bezier (blend of F and G)
- » P(t) = sQ + tR // Cubic Bezier (blend of Q and R)
- » Okay! So let's combine these all together...

» Do some hand-waving mathemagic here...

...and we get one equation to rule them all:

 $P(t) = (s^{3})A + 3(s^{2}t)B + 3(st^{2})C + (t^{3})D$

(BTW, there's our "cubic" t³)

» Let's compare the three Bezier equations (Linear, Quadratic, Cubic):

$$P(t) = (s)A + (t)B$$

$$P(t) = (s^{2})A + 2(st)B + (t^{2})C$$

$$P(t) = (s^{3})A + 3(s^{2}t)B + 3(st^{2})C + (t^{3})D$$

» There's some nice symmetry here...

- » Write in all of the numeric coefficients...
 » Everose each term as newers of **c** and **t**
- » Express each term as powers of **s** and **t**

 $P(t) = \mathbf{1}(s^{1}t^{0})\mathbf{A} + \mathbf{1}(s^{0}t^{1})\mathbf{B}$ $P(t) = \mathbf{1}(s^{2}t^{0})\mathbf{A} + \mathbf{2}(s^{1}t^{1})\mathbf{B} + \mathbf{1}(s^{0}t^{2})\mathbf{C}$ $P(t) = \mathbf{1}(s^{3}t^{0})\mathbf{A} + \mathbf{3}(s^{2}t^{1})\mathbf{B} + \mathbf{3}(s^{1}t^{2})\mathbf{C} + \mathbf{1}(s^{0}t^{3})\mathbf{D}$

» Write in all of the numeric coefficients...
» Express each term as powers of s and t

 $\begin{aligned} \mathsf{P}(t) &= \ \mathbf{1}(\mathsf{s}^{1}\mathsf{t}^{0})\mathsf{A} \ + \ \mathbf{1}(\mathsf{s}^{0}\mathsf{t}^{1})\mathsf{B} \\ \mathsf{P}(t) &= \ \mathbf{1}(\mathsf{s}^{2}\mathsf{t}^{0})\mathsf{A} \ + \ \mathbf{2}(\mathsf{s}^{1}\mathsf{t}^{1})\mathsf{B} \ + \ \mathbf{1}(\mathsf{s}^{0}\mathsf{t}^{2})\mathsf{C} \\ \mathsf{P}(t) &= \ \mathbf{1}(\mathsf{s}^{3}\mathsf{t}^{0})\mathsf{A} \ + \ \mathbf{3}(\mathsf{s}^{2}\mathsf{t}^{1})\mathsf{B} \ + \ \mathbf{3}(\mathsf{s}^{1}\mathsf{t}^{2})\mathsf{C} \ + \ \mathbf{1}(\mathsf{s}^{0}\mathsf{t}^{3})\mathsf{D} \end{aligned}$

» Note: "s" exponents count down

» Write in all of the numeric coefficients...
» Express each term as powers of s and t

$$\begin{split} \mathsf{P}(t) &= \ \mathbf{1}(\mathsf{s}^{1}t^{0})\mathbf{A} \ + \ \mathbf{1}(\mathsf{s}^{0}t^{1})\mathbf{B} \\ \mathsf{P}(t) &= \ \mathbf{1}(\mathsf{s}^{2}t^{0})\mathbf{A} \ + \ \mathbf{2}(\mathsf{s}^{1}t^{1})\mathbf{B} \ + \ \mathbf{1}(\mathsf{s}^{0}t^{2})\mathbf{C} \\ \mathsf{P}(t) &= \ \mathbf{1}(\mathsf{s}^{3}t^{0})\mathbf{A} \ + \ \mathbf{3}(\mathsf{s}^{2}t^{1})\mathbf{B} \ + \ \mathbf{3}(\mathsf{s}^{1}t^{2})\mathbf{C} \ + \ \mathbf{1}(\mathsf{s}^{0}t^{3})\mathbf{D} \end{split}$$

- » Note: "s" exponents count down
- » Note: "t" exponents count up

Cubic Bezier Curves 1 » Write in all of the numeric co Ints... 1 » Express each term as power $P(t) = 1(s^{1}t^{0})A + 1(s^{0}t^{1})B$ $P(t) = 1(s^{2}t^{0})A + 2(s^{1}t^{1})B + 1(s^{0}t^{2})C$ $P(t) = \mathbf{1}(s^{3}t^{0})\mathbf{A} + \mathbf{3}(s^{2}t^{1})\mathbf{B} + \mathbf{3}(s^{1}t^{2})\mathbf{C} + \mathbf{1}(s^{0}t^{3})\mathbf{D}$

» Note: numeric coefficients are from Pascal's Triangle...

» What if t = 0.5? (halfway through the curve) so then... s = 0.5 also

 $P(t) = (s^{3})A + 3(s^{2}t)B + 3(st^{2})C + (t^{3})D$ becomes $P(t) = (.5^{3})A + 3(.5^{2*}.5)B + 3(.5^{*}.5^{2})C + (.5^{3})D$ becomes P(t) = (.125)A + 3(.125)B + 3(.125)C + (.125)Dbecomes P(t) = .125A + .375B + .375C + .125D

» Cubic Bezier Curves can also be "S-shaped", if their control points are "twisted" as pictured here.

» Cubic Bezier Curves can also be "S-shaped", if their control points are "twisted" as pictured here.

» They can also loop back around in extreme cases.

Cubic Bezier Curves

» They can also loop back around in extreme cases.

Cubic Bezier Curves

Seen in lots of places:

- » Photoshop
- » GIMP
- » PostScript
- » Flash
- » AfterEffects
- » 3DS Max
- » Metafont
- » Understable Disc Golf flight path, from above

» Okay, enough of Curves already.

» So... what's a Spline?

www.GDConf.com

09

learn

A **spline** is a chain of curves joined end-to-end.

www.GDConf.com

09

learr

A **spline** is a chain of curves joined end-to-end.

www.GDConf.com

09

lear

A **spline** is a chain of curves joined end-to-end.

09

lear

A **spline** is a chain of curves joined end-to-end.

09

lear

» Curve end/start points (welds) are knots

» Think of **two** different **t**s:

spline's t: Zero at start of spline, keeps increasing until the end of the spline chain

local curve's t: Resets to 0 at start of each curve (at each knot).

» Conventionally, the local curve's t is fmod(spline_t, 1.0)

ea

For a spline of 4 curve-pieces:

Interpolate spline_t from 0.0 to 4.0

- » If spline_t is 2.67, then we are: 67% through this curve (local_t = .67) In the third curve section (0,1,2,3)
- » Plug local_t into third curve equation

www.GDConf.com

ea

» Interpolating **spline_t** from 0.0 to 4.0...

Quadratic Bezier Splines

t=4

t=3

This spline is a quadratic Bezier spline, since it is made out of quadratic Bezier curves

t=0

Continuity

- » Good continuity (C¹); connected and aligned
- » Poor continuity (C⁰); connected but not aligned

www.GDConf.com

Continuity

To ensure good continuity (C¹), make BC of first curve colinear (in line with) AB of second curve. (derivative is continuous across entire spline)

Continuity

» Excellent continuity (C²) is when speed/density matches on either side of each knot.

(second derivative is continuous across entire spline)

Cubic Bezier Splines

We can build a cubic Bezier spline instead by using cubic Bezier curves.

Cubic Bezier Splines

We can build a cubic Bezier spline instead by using cubic Bezier curves.

Cubic Bezier Splines

We can build a cubic Bezier spline instead by using cubic Bezier curves.

» A cubic Hermite spline is very similar to a cubic Bezier spline.

- » However, we do not specify the B and C guide points.
- Instead, we give the velocity at point A (as U), and the velocity at D (as V) for each cubic Hermite curve.

» To ensure connectedness (C⁰), D from curve #0 is again welded on top of A from curve #1 (at a knot).

To ensure smoothness (C¹), velocity into D (V) must match velocity's direction out of the next curve's A (U).

www.GDConf.com

Cubic Hermite Splines

» For best continuity (C²), velocity into D (V) must match direction and magnitude for the next curve's A (U).

(Hermite splines usually do match velocity magnitudes)

» Hermite curves, and Hermite splines, are also parametric and work basically the same way as Bezier curves: plug in "t" and go!

> The formula for **cubic Hermite curve** is:

 $P(t) = s^{2}(1+2t)A + t^{2}(1+2s)D + s^{2}tU + st^{2}V$

- » Cubic Hermite and Bezier curves can be converted back and forth.
- » To convert from cubic Hermite to Bezier:

B = A + (U/3)C = D - (V/3)

» To convert from cubic Bezier to Hermite:

$$U = 3(B - A)$$

 $V = 3(D - C)$

Catmull-Rom Splines

ea

Catmull-Rom Splines

- » A Catmull-Rom spline is just a cubic Hermite spline with special values chosen for the velocities at the start (U) and end (V) points of each section.
- » You can also think of Catmull-Rom not as a type of spline, but as a technique for building cubic Hermite splines.
- » Best application: curve-pathing through points

0

(1)

Catmull-Rom Splines

6

(4)

(5)

Start with a series of points (spline start, spline end, and interior knots)

2

3

0

(1)

Catmull-Rom Splines

» 1. Assume U and V velocities are zero at start and end of spline (points 0 and 6 here).

3

2

6

(4)

(5)

» 2. Compute a vector from point 0 to point 2. $(Vec_{0_{to_2}} = P_2 - P_0)$

» That will be our tangent for point 1.

» 3. Set the velocity for point 1 to be $\frac{1}{2}$ of that.

Now we have set positions 0 and 1, and velocities at points 0 and 1. Hermite curve!

» 4. Compute a vector from point 1 to point 3. $(Vec_{1_{to_3}} = P_3 - P_1)$

6

(4)

(5)

» That will be our tangent for point 2.

» 5. Set the velocity for point 2 to be $\frac{1}{2}$ of that.

» Now we have set positions and velocities for points 0, 1, and 2. We have a Hermite spline!

» Repeat the process to compute velocity at point 3.

» Repeat the process to compute velocity at point 3.

» And at point 4.

» And at point 4.

» Compute velocity for point 5.

» Compute velocity for point 5.

» We already set the velocity for point 6 to be zero, so we can close out the spline.

» And voila! A Catmull-Rom (Hermite) spline.

Here's the math for a Catmull-Rom Spline:

- » Place knots where you want them (A, D, etc.)
- » Position at the Nth point is P_N
- » Velocity at the Nth point is $V_{\rm N}$

»
$$V_N = (P_{N+1} - P_{N-1}) / 2$$

» i.e. Velocity at point P is half of [the vector pointing from the previous point to the next point].

- » Same as a Catmull-Rom spline, but with an extra parameter: **Tension**.
- » Tension can be set from 0 to 1.
- » A tension of 0 is just a Catmull-Rom spline.
- Increasing tension causes the velocities at all points in the spline to be scaled down.

So here is a Cardinal spline with tension=0 (same as a Catmull-Rom spline)

So here is a Cardinal spline with tension=.5 (velocities at points are ½ of the Catmull-Rom)

And here is a Cardinal spline with tension=1 (velocities at all points are zero)

Here's the math for a Cardinal Spline:

- » Place knots where you want them (A, D, etc.)
- » Position at the Nth point is P_N
- » Velocity at the Nth point is V_N
- » $V_N = (1 \text{tension})(P_{N+1} P_{N-1}) / 2$
- » i.e. Velocity at point P is some fraction of half of [the vector pointing from the previous point to the next point].
- » i.e. Same as Catmull-Rom, but V_N gets scaled down because of the (1 tension) multiply.

Other Spline Types

Kochanek–Bartels Splines

Same as a Cardinal spline (includes Tension), but with two extra tweaks (usually set on the entire spline):

Bias (from -1 to +1):

- A zero bias leaves the velocity vector alone
- A positive bias rotates the velocity vector to be more aligned with the point BEFORE this point
- A negative bias rotates the velocity vector to be more aligned with the point AFTER this point

Continuity (from -1 to +1):

- A zero continuity leaves the velocity vector alone
- A positive continuity "poofs out" the corners
- A negative continuity "sucks in / squares off" corners

B-Splines

- » Stands for "basis spline".
- » Just a generalization of Bezier splines.
- » The basic idea:

At any given time, P(t) is a weightedaverage blend of 2, 3, 4, or more points in its neighborhood.

» Equations are usually given in terms of the blend weights for each of the nearby points based on where t is at.

ea

Curved Surfaces

» Way beyond the scope of this talk, but basically you can criss-cross splines and form 2d curved surfaces.

Thanks!

Feel free to contact me:

Squirrel Eiserloh Director TrueThought LLC

<u>Squirrel@Eiserloh.net</u> <u>Squirrel@TrueThought.com</u>