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Collision Detection

» Track which pairs of objects…

are interpenetrating now, or rather

will collide over the next frame if no 
counter action is taken.

» Compute data for response.



The Problem

» Object placements are computed 
for discrete moments in time.

» Object trajectories are assumed to 
be continuous.



The Problem (cont’d)

» If collisions are checked only for 
the sampled moments, some 
collisions are missed (tunneling).

» Humans easily spot such artifacts.



The Fix

» Perform collision detection in 
continuous 4D space-time:

Construct a plausible trajectory for 
each moving object.

Check for collisions along these 
trajectories.     



Plausible Trajectory?

» Use of physically correct 
trajectories in real-time 4D 
collision detection is something for 
the not-so-near future.

» In game development real-time 
constraints are met by cheating.

» We cheat by using simplified 
trajectories.



Plausible Trajectory? 
(cont’d)

» Limited to trajectories with 
piecewise constant linear 
velocities.

» Angular velocities are ignored. 
Rotations are considered 
instantaneous.



Physical Representation

» Scenes may be composed of many 
independently moving objects.

» Objects may be composed of many 
primitives.

» Different types of primitives may 
be used (triangles, spheres, boxes, 
cylinders, capsules, andwhatnot).



Three Phases 

» Broad phase: Determine all pairs 
of objects that potentially collide.

» Mid phase: Determine potentially 
colliding primitives of a pair of 
objects. 

» Narrow phase: Determine 
contact between primitives and 
compute response data.



Primitives

» Only convex shapes are considered



Polytopes



Quadric Shapes



Configuration Space

» The configuration space obstacle of 
objects A and B is the set of all vectors 
from a point of B to a point of A.
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Translation

» Translation of A and/or B results in 
a translation of A – B.  



Rotation

» Rotation of A and/or B changes the 
shape of A – B. 



Configuration Space 
(cont’d)

» A and B intersect: A – B contains 
origin.

» Distance between A and B: length of 
shortest vector in A – B.
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Separating Axis
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Separating Axis Theorem

» Any pair of non-intersecting 
polytopes has a separating axis 
that is orthogonal to: 

» a face of either polytope, or
» an edge from each polytope.   



Separating Axis Theorem 
Proof (or at least a sketch)

» The CSO of non-intersecting 
polytopes is a polytope that does 
not contain the origin.

» The origin lies on the outside of at 
least one face of the CSO. 

» A face of the CSO is either the 
CSO of a face and a vertex or the 
CSO of two edges.



Separating Axis Method

» Test all face normals and all cross 
products of edge directions.

» If none of these vectors yields a 
separating axis then the polytopes must 
intersect.

» Given polytopes with resp. f1 and f2 faces 
and e1 and e2 edge directions, we need to 
test at most f1 +  f2 + e1 e2 axes.  



Separating Axis Method

Polytope 1 Polytope 2 #Axes

Line segment Triangle 0 + 1 + 3 = 4

Line segment Box 0 + 3 + 3 = 6

Triangle Triangle 1 + 1 + 9 = 11

Triangle Box 1 + 3 + 9 = 13

Box Box 3 + 3 + 9 = 15



GJK Algorithm

» An iterative method for computing 
the distance between convex 
objects.

» First publication in 1988 by 
Gilbert, Johnson, and Keerthi.

» Solves queries in configuration 
space.

» Uses an implicit object 
representation.



GJK Algorithm: Workings

» Approximate the point of the CSO 
closest to the origin

» Generate a sequence of simplices 
inside the CSO, each simplex lying 
closer to the origin than its 
predecessor.

» A simplex is a point, a line 
segment, a triangle, or a 
tetrahedron.



GJK Algorithm: Workings 
(cont’d)

» Simplex vertices are computed 
using support mappings. 
(Definition follows.)

» Terminate as soon as the current 
simplex is close enough. 

» In case of an intersection, the 
simplex contains the origin. 



Support Mappings

» A support mapping sA of an 
object A maps vectors to points 
of A, such that 
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Affine Transformation

» Shapes can be translated, rotated, and
scaled. For T(x) = Bx + c, we have
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Convex Hull

» Convex hulls of arbitrary convex shapes 
are readily available.
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Minkowski Sum

» Shapes can be fattened by Minkowski 
addition.
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Basic Steps (1/6)

» Suppose we have a simplex inside 
the CSO…



Basic Steps (2/6)

» …and the point v of the simplex 
closest to the origin.
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Basic Steps (3/6)

» Compute support point w = sA-B(-v).

v− w



Basic Steps (4/6)

» Add support point w to the current 
simplex.

w



Basic Steps (5/6)

» Compute the closest point v’ of the 
new simplex.
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Basic Steps (6/6)

» Discard all vertices that do not 
contribute to v’.
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Separating Axis

» If only an intersection test is 
needed then let GJK terminate as 
soon as the lower bound v·w 
becomes positive.

» For a positive lower bound v·w, the 
vector v is a separating axis.



Separating Axis (cont'd)
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» The supporting plane through w 
separates the origin from the CSO.



Separating Axes and 
Coherence
» Separating axes can be cached and 

reused as initial v in future tests on the 
same object pair.

» When the degree of frame coherence is 
high, the cached v is likely to be a 
separating axis in the new frame as well.

» An incremental version of GJK takes 
roughly one iteration per frame for 
smoothly moving objects. 



Shape Casting

» Find the earliest time two translated 
objects come in contact.

» Boils down to performing a ray cast in 
the objects’ configuration space.

» For objects A and B being translated over 
respectively vectors s and t, we perform 
a ray cast along the vector r = t – s onto 
A – B.

» The earliest time of contact is 

}10,:min{ ≤≤−∈ λλλ BAr



Normals

» A normal at the hit point of the ray 
is normal to the contact plane.



Ray Clipping
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GJK Ray Cast

» Do a standard GJK iteration, and 
use the support planes as clipping 
planes.

» Each time the ray is clipped, the 
origin is “shifted” to λr,…

» …and the current simplex is set to 
the last-found support point. 

» The vector -v that corresponds to 
the latest clipping plane is the 
normal at the hit point.



GJK Ray Cast (cont'd)

The vector -v is the 
latest normal.
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Accuracy vs. Performance

» Accuracy can be traded for 
performance by tweaking the 
error tolerance εtol.

» A greater tolerance results in 
fewer iterations but less accurate 
hit points and normals.



Accuracy vs. Performance

» εtol = 10-7, avg. time: 3.65 μs @ 2.6 GHz 



Accuracy vs. Performance

» εtol = 10-6, avg. time: 2.80 μs @ 2.6 GHz



Accuracy vs. Performance

» εtol = 10-5, avg. time: 2.03 μs @ 2.6 GHz



Accuracy vs. Performance

» εtol = 10-4, avg. time: 1.43 μs @ 2.6 GHz



Accuracy vs. Performance

» εtol = 10-3, avg. time: 1.02 μs @ 2.6 GHz



Accuracy vs. Performance

» εtol = 10-2, avg. time: 0.77 μs @ 2.6 GHz



Accuracy vs. Performance

» εtol = 10-1, avg. time: 0.62 μs @ 2.6 GHz



GJK Algorithm: Pros

» Extremely versatile: 
Applicable to any combination of 
convex shape types.
Computes distances, common points, 
and separating axes.
Can be tailored for finding space-time 
collisions.
Allows a smooth trade-off between 
accuracy and speed. 



GJK Algorithm: Pros 
(cont'd)

» Performs well: 
Exploits frame coherence.
Competitive with dedicated solutions 
for polytopes (Lin-Canny, V-Clip, 
SWIFT) .

» Despite its conceptual complexity, 
implementing GJK is not too 
difficult.

» Small code size.  



GJK Algorithm: Cons

» Difficult to grasp:
Concepts from linear algebra and 
convex analysis (determinants, 
Minkowski addition),  take some time 
to get comfortable with.
Maintaining a “geometric” mental 
image of the workings of the 
algorithm is challenging and not very 
helpful.



GJK Algorithm: Cons 
(cont'd)

» Suffers from numerical issues:
Termination is governed by predicates 
that rely on tolerances. 
Despite the use of tolerances, certain 
“hacks” are needed in order to 
guarantee termination in all cases.
Using 32-bit floating-point numbers is 
doable but tricky.



Mid Phase: BV Trees

» Used for objects composed of lots 
of primitives, such as triangle 
meshes.

» Aim is to quickly reject groups of 
primitives based on geometric 
locality.

» ‘Capture’ locality by constructing a 
hierarchy of bounding volumes. 



Bounding Volumes

» Should fit the model as tightly as 
possible.

» Overlap tests between volumes 
should be cheap.

» Should use a small amount of 
memory.

» Cost of computing the best-fit 
bounding volume should be low.



Bounding Volumes

» Good bounding volume types are:
Spheres
Axis-aligned bounding boxes (AABBs)
Discrete-orientation polytopes (k-
DOPs)
Oriented bounding boxes (OBBs)



Bounding Volume Types
Fit Test

(ops)
Memory 
(scalars)

Best-fit 
Cost

Sphere poor 11 4 high

AABB fair ≤ 6 6 low

k-DOP good ≤ 2k 2k medium

OBB excellent ≤ 200 15 high



Why AABBs?

» Offer a fair trade-off between storage 
space and fit.

» Overlap tests are fast.
» Allow for fast construction and update of 

bounding volumes.
» Storage requirements can be further 

reduced through compression.



AABB Tree Construction

1. Compute the AABB of the set of 
primitives.

2. Split the set using the plane that cuts 
the longest axis of the AABB in two 
equal halves.

3. Primitives that straddle the plane are 
added to the dominant side. (AABBs of 
the two sets may overlap.) 

4. Repeat from step 1 for the split sets.
5. Continue until all sets contain one 

primitive. 



Test Primitive vs. AABB 
Tree
» Compute the primitive’s AABB in the 

AABB tree’s local coordinate system.
» Recursively visit all nodes whose AABBs 

overlap the primitive’s AABB. 
» Test each visited leaf’s primitive against 

the query primitive.



Test Oriented AABB Trees

» Simultaneously descend in both trees.
» Requires an oriented-box test such as 

the SAT (lite).
» (SAT lite only tests the 6 face normals.)
» Always unfold the largest of the current 

two AABBs.
» If both sub-trees are leaves, perform a 

primitive-primitive test.



Updating AABB Trees

» AABB trees can be updated rather 
than recomputed for deformable 
meshes.

» First recompute the AABBs of the 
leaves.

» Work your way back to the root: 
A parent’s box is the AABB of the 
children’s boxes. 



Boxtree [Zachmann] 

» Since the set of primitives is split 
along the longest axis, only one of 
each child’s faces will differ 
significantly from its parent’s.

This face 
differs 

significantl
y from the 

box’s 
parent.

This face is close 
to the box’s 

parent



Boxtree [Zachmann]

» Store only the coordinate for the 
inner faces (similar to k-d tree.)

» The other coordinates are inherited 
from the parent box.

Only these 
coordinates 
are stored.  



Boxtree [Zachmann]

» Boxtrees have a few benefits over 
traditional AABB trees:

Smaller memory footprint.
Slightly faster build times.
Faster query times due to the fact 
that the number of axes in the SAT 
can be further reduced.       



Broad Phase

» Find all pairs of objects whose axis-
aligned bounding boxes overlap.

» We can do better than the O(n2) test-all-
pairs approach by exploiting two 
principles:

Spatial sorting: only nearby objects can 
collide.
Temporal coherence: the configuration of 
objects does not change a lot per frame.



Uniform Grid

» The world is a box.
» Subdivide the box into uniform 

rectangular cells (voxels).
» Cells need not keep coordinates of their 

position.
» Position (x, y, z) goes into cell 

where ex, ey, ez are the cell dimensions.

⎣ ⎦ ⎣ ⎦ ⎣ ⎦( )zyx ezeyexkji /,/,/),,( =



Uniform Grid (cont’d)

» Each cell maintains a set of objects. 
Two alternative strategies:

1. Add an object to all cells that overlap 
the object’s bounding box. Overlapping 
boxes must occupy the same cell.

2. Add an object to the cell that contains 
the center of the box. Neighboring cells 
need to be visited for overlapping 
boxes, but cells contain fewer objects.



Uniform Grid (cont’d)

» Grids work well for large number 
of objects of roughly equal size 
and density (e.g. fluids).

» For these cases, grids have O(1) 
memory and query overhead.



Spatial Hashing

» Same as uniform grid except that 
the world is unbounded.

» Cell ID (i, j, k) is hashed to a bucket  
in a hash table.

» Neighboring cells can still be 
visited. Simply compute hashes for 
(i±1, j±1, k±1).



Spatial Hashing (cont’d)

» As for grids, spatial hashing only 
works well for objects of roughly 
equal size and density. 

» Multiple cells are hashed to the 
same bucket, so spatial coherence 
may not be that great.



Sweep and Prune (1/3)

» For each world axis, maintain a 
sorted list of interval endpoints.

» Maintain also the set of 
overlapping box pairs.

» When a box moves, locally re-sort 
the lists by comparing and (if 
necessary) swapping the box 
endpoints with adjacent endpoints.



Sweep and Prune (2/3)

Re-order endpoints of moving objects.

B
A



Sweep and Prune (2/3)

Re-order endpoints of moving objects.

B

A



Sweep and Prune (3/3)

» When swapping “][“ to “[]”, the 
intervals start to overlap.

» When swapping “[]“ to “][”, the 
intervals cease to overlap.

» If the intervals on the other axes 
overlap, then the box pair starts or 
ceases to overlap.   



Adding Time: Encapsulation

» Enlarge AABBs of moving objects, 
such that they encapsulate the 
swept AABBs.

» Creates false positives: 
Encapsulating AABBs overlap 
where in space-time, the actual 
AABBs do not.



Adding Time: Encapsulation 
(cont'd)

Encapsulation results in false positives.

B
A



Adding Time: Queued Swaps

» Perform endpoint swaps in the proper 
order. 

» Calculate swap times and prioritize 
swaps on earliest time.

» After each swap, re-evaluate swaps with 
new neighbors. 

» Needs a priority queue that offers a 
decrease-key operation (as in Dijkstra’s 
algorithm or A*). 



Adding Time: Queued Swaps 
(cont'd)

Swap endpoints in the proper order.

B
A



Adding Time: Queued Swaps 
(cont'd)

Swap endpoints in the proper order.

A

B



Adding Time: Queued Swaps 
(cont'd)

Swap endpoints in the proper order.

B

A



Motion Coherence

» Space-time Sweep and Prune is 
often faster than the original 
version when many objects are 
moving in the same direction.

» Among a group of objects all 
having the same velocity vector 
not a single endpoint swap needs 
to be done.
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Thank You!

» For papers and other information, 
check:

http://www.dtecta.com
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