

Physics for Games
Programmers: Collision
Detection Crash Course

Gino van den Bergen
gino@dtecta.com

Collision Detection

» Track which pairs of objects…

are interpenetrating now, or rather

will collide over the next frame if no
counter action is taken.

» Compute data for response.

The Problem

» Object placements are computed
for discrete moments in time.

» Object trajectories are assumed to
be continuous.

The Problem (cont’d)

» If collisions are checked only for
the sampled moments, some
collisions are missed (tunneling).

» Humans easily spot such artifacts.

The Fix

» Perform collision detection in
continuous 4D space-time:

Construct a plausible trajectory for
each moving object.

Check for collisions along these
trajectories.

Plausible Trajectory?

» Use of physically correct
trajectories in real-time 4D
collision detection is something for
the not-so-near future.

» In game development real-time
constraints are met by cheating.

» We cheat by using simplified
trajectories.

Plausible Trajectory?
(cont’d)

» Limited to trajectories with
piecewise constant linear
velocities.

» Angular velocities are ignored.
Rotations are considered
instantaneous.

Physical Representation

» Scenes may be composed of many
independently moving objects.

» Objects may be composed of many
primitives.

» Different types of primitives may
be used (triangles, spheres, boxes,
cylinders, capsules, andwhatnot).

Three Phases

» Broad phase: Determine all pairs
of objects that potentially collide.

» Mid phase: Determine potentially
colliding primitives of a pair of
objects.

» Narrow phase: Determine
contact between primitives and
compute response data.

Primitives

» Only convex shapes are considered

Polytopes

Quadric Shapes

Configuration Space

» The configuration space obstacle of
objects A and B is the set of all vectors
from a point of B to a point of A.

},:{ BABA ∈∈−=− baba

− =

Translation

» Translation of A and/or B results in
a translation of A – B.

Rotation

» Rotation of A and/or B changes the
shape of A – B.

Configuration Space
(cont’d)

» A and B intersect: A – B contains
origin.

» Distance between A and B: length of
shortest vector in A – B.

BABA −∈⇔∅≠∩ 0

{ }BABAd −∈= xx :min),(

Separating Axis

0+

wv ⋅

p wv ⋅

pv ⋅

qv ⋅
p

qpw −=

q

v
v

Separating Axis Theorem

» Any pair of non-intersecting
polytopes has a separating axis
that is orthogonal to:

» a face of either polytope, or
» an edge from each polytope.

Separating Axis Theorem
Proof (or at least a sketch)

» The CSO of non-intersecting
polytopes is a polytope that does
not contain the origin.

» The origin lies on the outside of at
least one face of the CSO.

» A face of the CSO is either the
CSO of a face and a vertex or the
CSO of two edges.

Separating Axis Method

» Test all face normals and all cross
products of edge directions.

» If none of these vectors yields a
separating axis then the polytopes must
intersect.

» Given polytopes with resp. f1 and f2 faces
and e1 and e2 edge directions, we need to
test at most f1 + f2 + e1 e2 axes.

Separating Axis Method

Polytope 1 Polytope 2 #Axes

Line segment Triangle 0 + 1 + 3 = 4

Line segment Box 0 + 3 + 3 = 6

Triangle Triangle 1 + 1 + 9 = 11

Triangle Box 1 + 3 + 9 = 13

Box Box 3 + 3 + 9 = 15

GJK Algorithm

» An iterative method for computing
the distance between convex
objects.

» First publication in 1988 by
Gilbert, Johnson, and Keerthi.

» Solves queries in configuration
space.

» Uses an implicit object
representation.

GJK Algorithm: Workings

» Approximate the point of the CSO
closest to the origin

» Generate a sequence of simplices
inside the CSO, each simplex lying
closer to the origin than its
predecessor.

» A simplex is a point, a line
segment, a triangle, or a
tetrahedron.

GJK Algorithm: Workings
(cont’d)

» Simplex vertices are computed
using support mappings.
(Definition follows.)

» Terminate as soon as the current
simplex is close enough.

» In case of an intersection, the
simplex contains the origin.

Support Mappings

» A support mapping sA of an
object A maps vectors to points
of A, such that

{ }As A ∈⋅=⋅ xxvvv :max)(

Any point on
this face may be

returned as
support point

)(vAs

)(vAs

)(v−As

v− v
A

Affine Transformation

» Shapes can be translated, rotated, and
scaled. For T(x) = Bx + c, we have

))(()(T
)(vBTvT AA ss =

Convex Hull

» Convex hulls of arbitrary convex shapes
are readily available.

)()()}(),...,({},...,conv{ 1010
vv vv −−

=
nXXn ssXX ss

Minkowski Sum

» Shapes can be fattened by Minkowski
addition.

)()()(
)()()(
vvv

vvv
−−=

+=

−

+

BABA

BABA

sss
sss

=+

Basic Steps (1/6)

» Suppose we have a simplex inside
the CSO…

Basic Steps (2/6)

» …and the point v of the simplex
closest to the origin.

0+
v

Basic Steps (3/6)

» Compute support point w = sA-B(-v).

v− w

Basic Steps (4/6)

» Add support point w to the current
simplex.

w

Basic Steps (5/6)

» Compute the closest point v’ of the
new simplex.

w
0+

'v

Basic Steps (6/6)

» Discard all vertices that do not
contribute to v’.

w
0+

'v

Separating Axis

» If only an intersection test is
needed then let GJK terminate as
soon as the lower bound v·w
becomes positive.

» For a positive lower bound v·w, the
vector v is a separating axis.

Separating Axis (cont'd)

w
vwv ⋅

0+

» The supporting plane through w
separates the origin from the CSO.

Separating Axes and
Coherence
» Separating axes can be cached and

reused as initial v in future tests on the
same object pair.

» When the degree of frame coherence is
high, the cached v is likely to be a
separating axis in the new frame as well.

» An incremental version of GJK takes
roughly one iteration per frame for
smoothly moving objects.

Shape Casting

» Find the earliest time two translated
objects come in contact.

» Boils down to performing a ray cast in
the objects’ configuration space.

» For objects A and B being translated over
respectively vectors s and t, we perform
a ray cast along the vector r = t – s onto
A – B.

» The earliest time of contact is

}10,:min{ ≤≤−∈ λλλ BAr

Normals

» A normal at the hit point of the ray
is normal to the contact plane.

Ray Clipping

0+

rv
wv
⋅
⋅

=λ

v−

r

w

GJK Ray Cast

» Do a standard GJK iteration, and
use the support planes as clipping
planes.

» Each time the ray is clipped, the
origin is “shifted” to λr,…

» …and the current simplex is set to
the last-found support point.

» The vector -v that corresponds to
the latest clipping plane is the
normal at the hit point.

GJK Ray Cast (cont'd)

The vector -v is the
latest normal.

0+
v−

r

w

rλ

The origin
advances to the

new lower bound.

Accuracy vs. Performance

» Accuracy can be traded for
performance by tweaking the
error tolerance εtol.

» A greater tolerance results in
fewer iterations but less accurate
hit points and normals.

Accuracy vs. Performance

» εtol = 10-7, avg. time: 3.65 μs @ 2.6 GHz

Accuracy vs. Performance

» εtol = 10-6, avg. time: 2.80 μs @ 2.6 GHz

Accuracy vs. Performance

» εtol = 10-5, avg. time: 2.03 μs @ 2.6 GHz

Accuracy vs. Performance

» εtol = 10-4, avg. time: 1.43 μs @ 2.6 GHz

Accuracy vs. Performance

» εtol = 10-3, avg. time: 1.02 μs @ 2.6 GHz

Accuracy vs. Performance

» εtol = 10-2, avg. time: 0.77 μs @ 2.6 GHz

Accuracy vs. Performance

» εtol = 10-1, avg. time: 0.62 μs @ 2.6 GHz

GJK Algorithm: Pros

» Extremely versatile:
Applicable to any combination of
convex shape types.
Computes distances, common points,
and separating axes.
Can be tailored for finding space-time
collisions.
Allows a smooth trade-off between
accuracy and speed.

GJK Algorithm: Pros
(cont'd)

» Performs well:
Exploits frame coherence.
Competitive with dedicated solutions
for polytopes (Lin-Canny, V-Clip,
SWIFT) .

» Despite its conceptual complexity,
implementing GJK is not too
difficult.

» Small code size.

GJK Algorithm: Cons

» Difficult to grasp:
Concepts from linear algebra and
convex analysis (determinants,
Minkowski addition), take some time
to get comfortable with.
Maintaining a “geometric” mental
image of the workings of the
algorithm is challenging and not very
helpful.

GJK Algorithm: Cons
(cont'd)

» Suffers from numerical issues:
Termination is governed by predicates
that rely on tolerances.
Despite the use of tolerances, certain
“hacks” are needed in order to
guarantee termination in all cases.
Using 32-bit floating-point numbers is
doable but tricky.

Mid Phase: BV Trees

» Used for objects composed of lots
of primitives, such as triangle
meshes.

» Aim is to quickly reject groups of
primitives based on geometric
locality.

» ‘Capture’ locality by constructing a
hierarchy of bounding volumes.

Bounding Volumes

» Should fit the model as tightly as
possible.

» Overlap tests between volumes
should be cheap.

» Should use a small amount of
memory.

» Cost of computing the best-fit
bounding volume should be low.

Bounding Volumes

» Good bounding volume types are:
Spheres
Axis-aligned bounding boxes (AABBs)
Discrete-orientation polytopes (k-
DOPs)
Oriented bounding boxes (OBBs)

Bounding Volume Types
Fit Test

(ops)
Memory
(scalars)

Best-fit
Cost

Sphere poor 11 4 high

AABB fair ≤ 6 6 low

k-DOP good ≤ 2k 2k medium

OBB excellent ≤ 200 15 high

Why AABBs?

» Offer a fair trade-off between storage
space and fit.

» Overlap tests are fast.
» Allow for fast construction and update of

bounding volumes.
» Storage requirements can be further

reduced through compression.

AABB Tree Construction

1. Compute the AABB of the set of
primitives.

2. Split the set using the plane that cuts
the longest axis of the AABB in two
equal halves.

3. Primitives that straddle the plane are
added to the dominant side. (AABBs of
the two sets may overlap.)

4. Repeat from step 1 for the split sets.
5. Continue until all sets contain one

primitive.

Test Primitive vs. AABB
Tree
» Compute the primitive’s AABB in the

AABB tree’s local coordinate system.
» Recursively visit all nodes whose AABBs

overlap the primitive’s AABB.
» Test each visited leaf’s primitive against

the query primitive.

Test Oriented AABB Trees

» Simultaneously descend in both trees.
» Requires an oriented-box test such as

the SAT (lite).
» (SAT lite only tests the 6 face normals.)
» Always unfold the largest of the current

two AABBs.
» If both sub-trees are leaves, perform a

primitive-primitive test.

Updating AABB Trees

» AABB trees can be updated rather
than recomputed for deformable
meshes.

» First recompute the AABBs of the
leaves.

» Work your way back to the root:
A parent’s box is the AABB of the
children’s boxes.

Boxtree [Zachmann]

» Since the set of primitives is split
along the longest axis, only one of
each child’s faces will differ
significantly from its parent’s.

This face
differs

significantl
y from the

box’s
parent.

This face is close
to the box’s

parent

Boxtree [Zachmann]

» Store only the coordinate for the
inner faces (similar to k-d tree.)

» The other coordinates are inherited
from the parent box.

Only these
coordinates
are stored.

Boxtree [Zachmann]

» Boxtrees have a few benefits over
traditional AABB trees:

Smaller memory footprint.
Slightly faster build times.
Faster query times due to the fact
that the number of axes in the SAT
can be further reduced.

Broad Phase

» Find all pairs of objects whose axis-
aligned bounding boxes overlap.

» We can do better than the O(n2) test-all-
pairs approach by exploiting two
principles:

Spatial sorting: only nearby objects can
collide.
Temporal coherence: the configuration of
objects does not change a lot per frame.

Uniform Grid

» The world is a box.
» Subdivide the box into uniform

rectangular cells (voxels).
» Cells need not keep coordinates of their

position.
» Position (x, y, z) goes into cell

where ex, ey, ez are the cell dimensions.

⎣ ⎦ ⎣ ⎦ ⎣ ⎦()zyx ezeyexkji /,/,/),,(=

Uniform Grid (cont’d)

» Each cell maintains a set of objects.
Two alternative strategies:

1. Add an object to all cells that overlap
the object’s bounding box. Overlapping
boxes must occupy the same cell.

2. Add an object to the cell that contains
the center of the box. Neighboring cells
need to be visited for overlapping
boxes, but cells contain fewer objects.

Uniform Grid (cont’d)

» Grids work well for large number
of objects of roughly equal size
and density (e.g. fluids).

» For these cases, grids have O(1)
memory and query overhead.

Spatial Hashing

» Same as uniform grid except that
the world is unbounded.

» Cell ID (i, j, k) is hashed to a bucket
in a hash table.

» Neighboring cells can still be
visited. Simply compute hashes for
(i±1, j±1, k±1).

Spatial Hashing (cont’d)

» As for grids, spatial hashing only
works well for objects of roughly
equal size and density.

» Multiple cells are hashed to the
same bucket, so spatial coherence
may not be that great.

Sweep and Prune (1/3)

» For each world axis, maintain a
sorted list of interval endpoints.

» Maintain also the set of
overlapping box pairs.

» When a box moves, locally re-sort
the lists by comparing and (if
necessary) swapping the box
endpoints with adjacent endpoints.

Sweep and Prune (2/3)

Re-order endpoints of moving objects.

B
A

Sweep and Prune (2/3)

Re-order endpoints of moving objects.

B

A

Sweep and Prune (3/3)

» When swapping “][“ to “[]”, the
intervals start to overlap.

» When swapping “[]“ to “][”, the
intervals cease to overlap.

» If the intervals on the other axes
overlap, then the box pair starts or
ceases to overlap.

Adding Time: Encapsulation

» Enlarge AABBs of moving objects,
such that they encapsulate the
swept AABBs.

» Creates false positives:
Encapsulating AABBs overlap
where in space-time, the actual
AABBs do not.

Adding Time: Encapsulation
(cont'd)

Encapsulation results in false positives.

B
A

Adding Time: Queued Swaps

» Perform endpoint swaps in the proper
order.

» Calculate swap times and prioritize
swaps on earliest time.

» After each swap, re-evaluate swaps with
new neighbors.

» Needs a priority queue that offers a
decrease-key operation (as in Dijkstra’s
algorithm or A*).

Adding Time: Queued Swaps
(cont'd)

Swap endpoints in the proper order.

B
A

Adding Time: Queued Swaps
(cont'd)

Swap endpoints in the proper order.

A

B

Adding Time: Queued Swaps
(cont'd)

Swap endpoints in the proper order.

B

A

Motion Coherence

» Space-time Sweep and Prune is
often faster than the original
version when many objects are
moving in the same direction.

» Among a group of objects all
having the same velocity vector
not a single endpoint swap needs
to be done.

References

» Thomas H. Cormen et al. Introduction to
Algorithms, Second Edition. MIT Press,
2001.

» E. G. Gilbert, D. W. Johnson, and S. S.
Keerthi. A fast procedure for computing
the distance between complex objects in
three-dimensional space. IEEE Journal of
Robotics and Automation, 4(2):192-203,
1988.

» Gabriel Zachmann. Minimal Hierarchical
Collision Detection. Proc. VRST, 2002.

» Gino van den Bergen. Collision Detection
in Interactive 3D Environments. Morgan
Kaufmann Publishers, 2004.

Thank You!

» For papers and other information,
check:

http://www.dtecta.com

	Slide Number 1
	Physics for Games Programmers: Collision Detection Crash Course
	Collision Detection
	The Problem
	The Problem (cont’d)
	The Fix
	Plausible Trajectory?
	Plausible Trajectory? �(cont’d)
	Physical Representation
	Three Phases
	Primitives
	Polytopes
	Quadric Shapes
	Configuration Space
	Translation
	Rotation
	Configuration Space (cont’d)
	Separating Axis
	Separating Axis Theorem
	Separating Axis Theorem Proof (or at least a sketch)
	Separating Axis Method
	Separating Axis Method
	GJK Algorithm
	GJK Algorithm: Workings
	GJK Algorithm: Workings (cont’d)
	Support Mappings
	Affine Transformation
	Convex Hull
	Minkowski Sum
	Basic Steps (1/6)
	Basic Steps (2/6)
	Basic Steps (3/6)
	Basic Steps (4/6)
	Basic Steps (5/6)
	Basic Steps (6/6)
	Separating Axis
	Separating Axis (cont'd)
	Separating Axes and Coherence
	Shape Casting
	Normals
	Ray Clipping
	GJK Ray Cast
	GJK Ray Cast (cont'd)
	Accuracy vs. Performance
	Accuracy vs. Performance
	Accuracy vs. Performance
	Accuracy vs. Performance
	Accuracy vs. Performance
	Accuracy vs. Performance
	Accuracy vs. Performance
	Accuracy vs. Performance
	GJK Algorithm: Pros
	GJK Algorithm: Pros (cont'd)
	GJK Algorithm: Cons
	GJK Algorithm: Cons (cont'd)
	Mid Phase: BV Trees
	Bounding Volumes
	Bounding Volumes
	Bounding Volume Types
	Why AABBs?
	AABB Tree Construction
	Test Primitive vs. AABB Tree
	Test Oriented AABB Trees
	Updating AABB Trees
	Boxtree [Zachmann]
	Boxtree [Zachmann]
	Boxtree [Zachmann]
	Broad Phase
	Uniform Grid
	Uniform Grid (cont’d)
	Uniform Grid (cont’d)
	Spatial Hashing
	Spatial Hashing (cont’d)
	Sweep and Prune (1/3)
	Sweep and Prune (2/3)
	Sweep and Prune (2/3)
	Sweep and Prune (3/3)
	Adding Time: Encapsulation
	Adding Time: Encapsulation (cont'd)
	Adding Time: Queued Swaps
	Adding Time: Queued Swaps (cont'd)
	Adding Time: Queued Swaps (cont'd)
	Adding Time: Queued Swaps (cont'd)
	Motion Coherence
	References
	Thank You!

