
©Takahiro Harada

Parallelizing the Physics Pipeline
: Physics Simulations on the GPU

Takahiro Harada

havok
Senior Software Engineer
takahiro.harada@havok.com

©Takahiro Harada

Introduction

» Based on my research at the university of

Tokyo
! Not at havok

» The details can be found in my publications
! Takahiro Harada, “Real-time Rigid Body Simulation

on GPUs”, GPU Gems 3

! Takahiro Harada, Issei Masaie, Seiichi Koshizuka,

Yoichiro Kawaguchi, Massive Particles: Particle-

based Simulations on Multiple GPUs, SIGGRAPH

2008 Talk

! etc...

! http://www.iii.u-tokyo.ac.jp/~takahiroharada/

©Takahiro Harada

GPU

» GPU is designed for graphics

» GPU is good at
! Many similar computations

! Simple computations

! Not complicated computations

! All the thread taking the same path is ideal

» Ex. particle simulation without interaction

x

v

x’ 0

0

0

x
’=
x
+
v
!
t

1

1

1

x
’=
x
+
v
!
t

2

2

2

x
’=
x
+
v
!
t

3

3

3

x
’=
x
+
v
!
t

4

4

4
x
’=
x
+
v
!
t

5

5

5

x
’=
x
+
v
!
t

6

6

6

x
’=
x
+
v
!
t

7

7

7

x
’=
x
+
v
!
t

8

8

8

x
’=
x
+
v
!
t

9

9

9

x
’=
x
+
v
!
t

10

10

10

n-1

n-1

n-1

x
’=
x
+
v
!
t

x
’=
x
+
v
!
t

©Takahiro Harada

Physics Simulation

» Physics simulation is highly parallel

» Grid-based fluid simulation is well mapped on
the GPU

» How about rigid bodies?

! No general solution yet

! Simplified approach

! Takahiro Harada, “Real-time Rigid Body
Simulation on GPUs”, GPU Gems3

!

©Takahiro Harada

Particle-based Simulation

» Smoothed Particle Hydrodynamics
! Compressible fluids

!

©Takahiro Harada

SPH Simulation

» Overview
! For each particle

! Look for neighboring particles

! For each particle
! Calculate pressure from neighbors

! For each particle
! Force on a particle is calculated using values of

neighbors

! For each particle
! Integrate velocity and position

» Problem is neighbor search
! Use uniform grid to accomplish this

! Discuss later

©Takahiro Harada
Rigid Body Simulation using
Particles
» Extension to particle based simulation

» Use particles to calculate collision

» Rigid body is represented by particles
! Not accurate shape

! Trade off between accuracy and computation

! Simple, uniform computations -> Good for GPUs

©Takahiro Harada

Data Structure

» For each rigid body
! Positions

! Quaternion

! Linear momentum

! Angular momentum

» For each particle
! Position

! Velocity

! Force

» For neighbor

search
! 3D grid

Position

Particle

Position

Particle

Position

Velocity

Linear M.

Rotation M.

©Takahiro Harada

Overview

» Computation of particle values
! For each particle: read values of the rigid body and

write the particle values

» Grid generation
! A little bit tricky, later

» Collision detection and reaction
! For each particle: read neighbors from the grid,

write the calculated force (spring & damper)

» Update momenta
! For each rigid body: sum up the force of particles

and update momenta

» Update position and quaternion
! For each rigid body: read momenta, update these

©Takahiro Harada

Grid Construction

» Storing particle indices to 3D grid

» Can limit the number of particle in a cell if
particles does not penetrate

» Each thread read particle position, write the
index to the cell location

» But this fails when several particles are in the
same cell

! Divide this into several pass

! 1 index is written in a pass

! Repeat n times (max number of particles)

©Takahiro Harada

Demo

©Takahiro Harada

Extension

» If there are more than particles
! Particles + Mesh(cloth)

» Can solve using several grids
! A grid for particle

! A gird for mesh

» Still not general

©Takahiro Harada
Broadphase Collision
Detection

» Uniform grid is suited for the GPU
! But not good for objects of not the same sizes

» Other approaches?
! Sweep and prune

! Tree

» Good for objects varying sizes
! Much complicated than uniform grid

! Can implement and accelerate on the GPU?

©Takahiro Harada

Tree traversal on the GPU

» Well studied in the field of ray tracing
! Octree

! Kd tree

» 2 problems when using for a real-time
rigid body simulation
! Dynamic construction of the tree

! Several studies but few of them can beat the CPU

! Traversal
! Packet based for ray tracing -> cannot use this for

collision detection

! What is good for collision detection?

©Takahiro Harada
Dynamic Construction of
Tree
» Tree construction is recursive subdivision of

inputs -> not good for GPUs

» Convert the problem to a sorting problem
! Calculate morton key of objects

! Sort them

! Add child-parent information to the sorted list
! Lauterbach et al., Fast BVH Construction on GPUs,

Eurographics 2009

! MacCool, M., Creating Coherence-Ray tracing, Spatial Search

and irregular Data Structure, Symposium on Interactive Ray

Tracing 2008

» Still an open problem

©Takahiro Harada

Tree Traversal

» Using stack is most common
! Can implement on the GPU

! But the requirement of resources is too much ->

kill the performance

» Stackless traversal with additional info
! Dynamic update?

! High overhead

» Restart
! Cannot restart because we want the overlap of

bounding boxes (maybe can truncate BB...)

©Takahiro Harada
Tree Traversal using History
Flags
» Observation

! Descending a tree does not need any information
! Start from first element of children

! Ascending a tree needs where to get back

» Instead of stacking node indices, stores the

history of traversal

» Data can be small

©Takahiro Harada
Tree Traversal using History
Flags
» For each level, store 4 bits

! Initialize 0000

» After visiting a node, flip the flag
! 1000

» Descending to the next level
! Just leave the flag and do the same to the next level

» Visiting the next element
! Find “0” in the history flag

» Ascending the tree
! When cannot find “0”, ascend

0000

0000

0000

©Takahiro Harada
Tree Traversal using History
Flags
» For each level, store 4 bits

! Initialize 0000

» After visiting a node, flip the flag
! 1000

» Descending to the next level
! Just leave the flag and do the same to the next level

» Visiting the next element
! Find “0” in the history flag

» Ascending the tree
! When cannot find “0”, ascend

1000

0000

0000

©Takahiro Harada
Tree Traversal using History
Flags
» For each level, store 4 bits

! Initialize 0000

» After visiting a node, flip the flag
! 1000

» Descending to the next level
! Just leave the flag and do the same to the next level

» Visiting the next element
! Find “0” in the history flag

» Ascending the tree
! When cannot find “0”, ascend

1000

1000

0000

©Takahiro Harada
Tree Traversal using History
Flags
» For each level, store 4 bits

! Initialize 0000

» After visiting a node, flip the flag
! 1000

» Descending to the next level
! Just leave the flag and do the same to the next level

» Visiting the next element
! Find “0” in the history flag

» Ascending the tree
! When cannot find “0”, ascend

1000

1000

1000

©Takahiro Harada
Tree Traversal using History
Flags
» For each level, store 4 bits

! Initialize 0000

» After visiting a node, flip the flag
! 1000

» Descending to the next level
! Just leave the flag and do the same to the next level

» Visiting the next element
! Find “0” in the history flag

» Ascending the tree
! When cannot find “0”, ascend

1000

1000

1100

©Takahiro Harada
Tree Traversal using History
Flags
» For each level, store 4 bits

! Initialize 0000

» After visiting a node, flip the flag
! 1000

» Descending to the next level
! Just leave the flag and do the same to the next level

» Visiting the next element
! Find “0” in the history flag

» Ascending the tree
! When cannot find “0”, ascend

1000

1000

1111

©Takahiro Harada
Tree Traversal using History
Flags
» For each level, store 4 bits

! Initialize 0000

» After visiting a node, flip the flag
! 1000

» Descending to the next level
! Just leave the flag and do the same to the next level

» Visiting the next element
! Find “0” in the history flag

» Ascending the tree
! When cannot find “0”, ascend

1000

1100

0000

©Takahiro Harada
Tree Traversal using History
Flags
» For each level, store 4 bits

! Initialize 0000

» After visiting a node, flip the flag
! 1000

» Descending to the next level
! Just leave the flag and do the same to the next level

» Visiting the next element
! Find “0” in the history flag

» Ascending the tree
! When cannot find “0”, ascend

1000

1111

0000

©Takahiro Harada
Tree Traversal using History
Flags
» For each level, store 4 bits

! Initialize 0000

» After visiting a node, flip the flag
! 1000

» Descending to the next level
! Just leave the flag and do the same to the next level

» Visiting the next element
! Find “0” in the history flag

» Ascending the tree
! When cannot find “0”, ascend

1000

1111

0000

©Takahiro Harada
Tree Traversal using History
Flags
» For each level, store 4 bits

! Initialize 0000

» After visiting a node, flip the flag
! 1000

» Descending to the next level
! Just leave the flag and do the same to the next level

» Visiting the next element
! Find “0” in the history flag

» Ascending the tree
! When cannot find “0”, ascend

» Discarding the flags of the level because they are
used when descending to this level again

» 7 level octree traversal only requires 4bit x 7level =
28bit

» Can use shared memory for the storage of history
flag -> fast access

©Takahiro Harada

Demo
©Takahiro Harada

Performance Comparison

Number of Boxes

T
ra

v
e
rs

a
l
T
im

e
 (

m
s
)

!

"

#

$

%

&!

&"

&#

&$

! '(!!! &!(!!! &'(!!! "!(!!! "'(!!!)!(!!!)'(!!!

*+,-./0123

*+,-45./6783

©Takahiro Harada

Consideration

» Can implement tree construction and

traversal on the GPU
! If compare this to best solution on the CPU??

! Octree is not the best solution on the CPU

» Kd tree on the GPU is also studied

» But the CPU is better
! Shevtsov et al., “Highly Parallel Fast KD-tree

Construction for Interactive Ray Tracing of

Dynamic Scenes”, EUROGRAPHICS 2007

! Zhou et al., “Real-Time KD-Tree Construction on

Graphics Hardware”, SIGGRAPH Asia 2008

©Takahiro Harada

Solving Constraint

» Usually, constraints are solved for velocity

» Penalty based
! No problem for parallel computation

! Input: position, output: force

» Impulse based
! Problem when parallelizing

! Input: velocity, output: velocity

! How to parallelize on the GPU?

©Takahiro Harada

Problem of Parallel Update

» If a rigid body is colliding to another rigid

body, no problem

» If a rigid body is colliding to several rigid

bodies, cannot update in parallel

©Takahiro Harada

Batching

» Not update everything at the same time

» Divide them into several batches

» Update batches in sequential
! Update collisions in a batch in parallel

» But how to divide into batches?? GPU??

©Takahiro Harada

Batch Creation on GPU

» CPU can do this easily
! Chen et al., High-Performance Physical Simulation

on Next-Generation Architecture with Many Cores,

Intel Technology Journal, volume 11 issue 04

» To implement on the GPU, the computation

has to be parallel

» Do it by partially serialize the computation
! Synchronization of several threads, which is

available on CUDA, OpenCL

©Takahiro Harada

Batch Creation

» A thread is assigned for a constraint

Thread ID 0 1 2 3 4 5 6 7 8 9

Constraint a, j a, b a, c c, d d, e e, i b, e h, i f, h f, g

a

c d

b
e

i

h
f

g

j

©Takahiro Harada

Batch Creation

» A thread reads a constraint data
! Thread0 reads 0, 9

» And write a flag to 0, 9, if they are not

flagged

» Can serialize operation in a block
! syncthreads

Thread Id 0 1 2 3 4 5 6 7 8 9

Constraint a, j a, b a, c c, d d, e e, i b, e h, i f, h f, g

a b c d e f g h i j

synchronization

synchronization

synchronization

synchronization

©Takahiro Harada

Inconsistency

» But it does not solve the conflict among

blocks

» Thread 1 and Thread 6 run at the same time
! Both try to flag 1

» Need another mechanism to solve this

situation
! Need global synchronization

a b c d e f g h i j

5

6

7

8

9

a b c d e f g h i j

0

1

2

3

4

Thread Id 0 1 2 3 4 5 6 7 8 9

Constraint a, j a, b a,c c, d d, e e, i b, e h, i f, h f, g

©Takahiro Harada

Solving Inconsistency

» Thread 1 -> (0, 1)

» Thread 6 -> (1, 4)

» What we get is
! Thread 1 succeed, Thread 6 failed

! Thread 1 failed, Thread 1 succeed

» If a thread failed to flag a rigid body, it is not
completed

» Instead of flagging, write constraint index to
rigid bodies in the constraint
! Thread 1 writes 1 to 0, 1

! Thread 6 writes 1 to 1, 4

©Takahiro Harada

Solving Inconsistency

» [0, 1, 4] -> [1, 1, 6] or [1, 6, 6]

» Run another kernel to check the write

» A thread reads the number in rigid bodies in

the constraint

» If both number is identical to the index of

the constraint, it succeeded -> keep this
! otherwise, it is not valid. Delete and do in the next

pass

©Takahiro Harada

Procedure

» Batch 0
! Clear the buffer

! Write indices sequentially in a warp

! Check if the write was succeed

» Batch 1
! Clear the buffer

! Write indices sequentially in a warp

! Check if the write was succeed

» Batch 2
! Clear the buffer

! Write indices sequentially in a warp

! Check if the write was succeed

©Takahiro Harada

Demo

©Takahiro Harada

Batch
©Takahiro Harada

Using Multiple GPUs

Memory

MemoryMemoryMemory

» Cannot run applications developed for a GPU

» Need two levels of parallelization

» 1GPU

» Multiple GPUs

©Takahiro Harada

How to Design?

» Each GPU manages its own data

» No sequential process, completely parallel

GPU0 GPU1 GPU2 GPU3

©Takahiro Harada
Particle Simulation on
Multiple GPUs
» Grid-based

! Domain decomposition is a natural choice, because

elements in a subdomain does not change

» Particle-based
! Have to assign particles to GPUs dynamically,

because they move

! How??

! Overhead can be big without careful design

©Takahiro Harada
Decomposition of
Computation
» Computation of particle values requires values of

neighbors
! Inside of subdomain: all the data is in the memory of its

own

! Boundary of subdomain: some data is in the memory of
others

» Have to read data from other GPUs

! Communicating when required makes the granularity of
transfer smaller and inefficient

» Transfer only “Ghost Region” and “Ghost
Particles”
! Ghosts are not updated

! Just refer the data

©Takahiro Harada

Environment

» 4GPUs(Simulation) + 1GPU(Rendering)
! S870 + 8800GTS

» 6GPU(Simulation) + 1GPU(Rendering)

@GDC2008
! QuadroPlex x 2 + Tesla D870 + 8800GTS

©Takahiro Harada

Results

0

10

20

30

40

50

60

70

80

90

100

0 200,000 400,000 600,000 800,000 1,000,000 1,200,000

1GPU

2GPUs

4GPUs

Number of Particles

C
o
m

p
u
ta

ti
o
n
 T

im
e
 (

m
s
)

©Takahiro Harada

©Takahiro Harada

Thanks

» takahiro.harada@havok.com

» Demos :
! http://www.iii.u-tokyo.ac.jp/~takahiroharada/

