Jeann hetwork inspire www.GDConf.com

Game Developers Conference[®] March 23-27, 2009 Moscone Center, San Francisco

Jon Story, AMD Holger Gruen, AMD

www.GDConf.com

09

learr

Agenda

» High Definition Ambient Occlusion» High Quality Shadow Filtering

High Definition Ambient Occlusion (HDAO)

www.GDConf.com

Conventional AO: 1

» Exampletite augmentations spaces intervente states and the states of t

» Occlusion Factor ~= Failure Rate

Occlusion = 3/2

View Vector

ea

ea

Conventional AO: 2

- » Usually requires many depth samples to achieve acceptable results
- » Maths overhead per sample is high Transform to post-perspective space Depth testing Result attenuation
- » Filtering pass almost essential to smooth out dithering and banding artifacts

The Aim of HDAO

- » Deliver a believable AO look
- » Achieve affordable performance on today's HW
- » Avoid need for filtering pass(es) Keep performance higher No additional render targets required
- » Easy to incorporate
 No normals required
 Account for normals with ease if available

ea

How does HDAO Fit into the Rendering Pipeline?

- » Bisnaddsynotherfaine saws haelfs) rasith
- » Opsibilities as part

www.GDConf.com

ea

How does HDAO Work?

- » Stable of the second seco
- » Wethayaydeteeted a salley

www.GDConf.com

.ea

Valley Detection

» Blackforlingplasse | bliggeteneficienterioseteration | twin placetorlible
 placetorlible

Coeditusion Holanto Grue Nadle th Tesidea

www.GDConf.com

ea

How does Gather Work?

- » Similar fotebesh periposed mone DX9 ATA CAPIDs a single instruction
- » A knailea ballee dom all/ ID is sected Din 1 (0. revoio Us knarsivorase of the HLSL compiler
- » Ms.esd osesl/haytehc2009e\$Dkroatater (restriction gone for DX11) depth buffer (0,0) (1,0) Shadow maps

Х

(1, 1)

(0, 1)

f4Depth = DepthTex.Gather(SamPoint, f2Coord);

ear

Direct3D 10.0 Version of Gather

» Be sure to get the integer offsets correct for the 4 samples

// Direct3D 10.1
f4Ret = Tex.Gather(g_SamplePoint, f2TexCoord);

// Direct3D 10.0
f4Ret.x = Tex.SampleLevel(g_SamplePoint, f2TexCoord, 0, int2(0, 1)).x;
f4Ret.y = Tex.SampleLevel(g_SamplePoint, f2TexCoord, 0, int2(1, 1)).x;
f4Ret.z = Tex.SampleLevel(g_SamplePoint, f2TexCoord, 0, int2(1, 0)).x;
f4Ret.w = Tex.SampleLevel(g_SamplePoint, f2TexCoord, 0, int2(0, 0)).x;

www.GDConf.com

09 learn netw

Gather Pattern

» Bingholg Saturde with the the states and with a state of the states of

www.GDConf.com

for(iGather=0; iGather<NUM_GATHERS; iGather++)</pre>

// Gather mirrored tw

f4SampledZ[0] = Depth
f4SampledZ[0] = -g_1
f4SampledZ[1] = Depth
f4SampledZ[1] = -g_fQ

// Detect valleys

// First twin

f4Diff = fCenterZ.xxx
f4Compare[0] = (f4Di;

f4Compare[0] *= (f4D:

// Mirrored twin

f4Diff = fCenterZ.xxxx - f4Sample
f4Compare[1] = (f4Diff < g_fHDA
f4Compare[1] *= (f4Diff > g_fHI

// Accumulate occlusion factor

We perform the valley detection logic on 4 valleys at once

Finally we weight and store the occlusion factor of 4 valleys at a time

> dius.xxxx) ? (1.0f) : (0.0f); eptRadius.xxxx) ? (1.0f) : (0.0f);

f4Occlusion.xyzw += (g_f4RingWeight[iGather].xyzw * f4Compare[0].xyzw *
f4Compare[1].zwxy);

www.GDConf.com

}

ear

HDAO Boff (ete (dbpthlø)nly) - 40 Gathers - No filtering needed

Bringing in Camera Space Normals

- » HDAO easily accounts for normals
- » Scale Z component of camera space normal by desired amount
- » Add scaled normal to camera Z value
- » Run valley detection code as before

```
// Offset by scaled normal
f4CameraZ += ( f4NormalZ * g_fNormalScale );
```

ear

HDAO Optf(ete (odle potinitys) mouries) als)

- 80 Gathers (could use alot less)
- No filtering needed

Early Rejection Test

- » Eowscheoosthy moestaels, camproteuce angles izea blee octhesion
- » OrTeoraipute direction vectors from fulse adopte space positions
- » Databatieating in order set pre-former set
- » Reject if too shallow

ear

Performance

» HDAO (depth and/)normals): Direct3D 10.0: 0.66 MS Direct3D 10.1: 0.069M9S

Phenom 2.3GHz, HD4870X2, 2 GB RAM, Windows Vista 32 (SP1)

www.GDConf.com

Tom Clancy's HAWX Publisher: Ubisoft Developer: Ubisoft Romania

Protect the refine

2 DEF

182

KITTE

HDAO is only applied to the terrain and buildings (not the aeroplane)

www.GDConf.com

09

learn netw

Stormrise Publisher: SEGA Developer: The Creative Assembly Australia

www.GDConf.com

09

learn

G 09 C learn network inspire

www.GDConf.com

Future Work

- » Looking into a compute shader accelerated version
 - Solid sampling pattern lends itself well to Thread Local Storage
- » Account for strong light sources AO for many scenes is not low frequency
- » Real valley tracing...

ea

High Quality Shadow Filtering

www.GDConf.com

How Direct3D 10.1 helps filtering for single channel textures

Direct3D 10.0

Direct3D 10.1

NxN point samples if you need all data points - e.g. 4x4 = 16 (N/2)x(N/2) Gather operations get all data - e.g. 2x2 = 4

Why revisit conventional shadow filtering? - 1

- » There are advanced techniques for smooth shadows
 - » The most prominent are
 - » VSMs, layered VSMs, CSMs, ESMs, ACDF SMs
 - » Can be combined with SATs for arbitrary smoothness
- » But these methods bring other problems
 - » The renderer gets more complex
 - » May need to work around specific artifacts
 - » Use only if neccessary

Why revisit conventional shadow filtering? - 2

» Advanced methods come at a cost

- » More RTs at a high memory cost
- » Costly postprocessing operations
- » Non optimal RT formats
- » Is an advanced techique needed?
 - » Depth buffer based deferred shadowing does not depend on depth complexity
 - » Big conventional shadow filters not that expensive

ea

Let's filter a 4x4 visibility sample block

Direct3D 10.1

4 Gather operations plus some ALU – (N/2)x(N/2) Gather ops for NxN Direct3D 10.0

9 PCF samples plus some ALU right ?

www.GDConf.com

09

Let's filter a 4x4 visibility sample block

Direct3D 10.1

4 Gather operations plus some ALU – (N/2)x(N/2) Gather ops for NxN Direct3D 10.0

9 PCF samples plus some ALU right ?

09

Let's filter a 4x4 visibility sample block

Direct3D 10.1

4 Gather operations plus some ALU => (N/2)x(N/2) Gather() samples for NxN Direct3D 10.0

4 shifted PCF samples plus a post weight factor is enough => (N/2)x(N/2) PCF samples for NxN

09

Let's look at only 1 row of 4 visibility samples

www.GDConf.com

09

learr

Credit for this idea goes to: Sergey Nenakhov at Funcom

- » Only (N/2)x(N/2) PCF samples necessary instead for a uniform filter
- » Cheaper than commonly assumed
 - » 8x8 with only 16 PCF samples
 - » Not only for shadow filtering
- » Same texture op count as Direct3D 10.1
- » Why bother with Direct3D 10.1?

ea

From DICE's Frostbite Engine: Uniform shadow filtering

From DICE's Frostbite Engine: Gaussian shadow filtering

Disadvantages of uniform shadow filtering

Uniform filtering blurs away too many details Gaussian filtering preserves more details

09

learr

Use a unique weight per PCF sample

G O9 C Learn network inspire

Use a unique weight per PCF sample

www.GDConf.com

09

learn netw

Use a unique weight per PCF sample

G Og C learn network inspire

www.GDConf.com

- » Direct3D 10.1 needs (N/2)x(N/2) Gather() samples
- » A (N/2)x(N/2) PCF samples solution is no longer possible for unique weights
 - » Filter weights are not symmetric
 - » Equation system not solvable
 - » It is possible to get below NxN PCF ops for Direct3D 10.0 though

Let's filter a 4x4 visibility sample block using unique weights

Direct3D 10.1

4 Gather() operations plus some ALU => (N/2)x(N/2) Gather samples for NxN Direct3D 10.0

9 PCF samples plus some ALU right ?

09

Let's filter a 4x4 visibility sample block using unique weights

Direct3D 10.1

4 Gather() samples plus some ALU => (N/2)x(N/2) Gather() samples for NxN Direct3D 10.0

9 PCF samples plus some ALU right ?

09

Let's filter a 4x4 visibility sample block using unique weights

Direct3D 10.1

4 Gather() samples plus some ALU => (N/2)x(N/2) Gather() samples for NxN Direct3D 10.0

6 shifted PCF samples plus post weight factors is enough => (N/2)x(N-1) PCF samples for NxN

ear

www.GDConf.com

www.GDConf.com

www.GDConf.com

- » Direct3D 10.0
 - » needs (N/2)x(N-1) PCF samples for Gaussian shadows – not (N-1)x(N-1)!
 - » can do one row with (N/2) samples with shifted x texture coords
 - » y texture coord stays untouched
- » Stats of an optimized shader for 8x8
 - » Direct3D 10.1 shader roughly twice as fast as the Direct3D10.0 version
 - » Direct3D 10.1 shader as fast as the optimized uniform (N/2)x(N/2) filter under Direct3D10.0

ea

From DICE's Frostbite Engine: Standard 2x2 Shadow filtering

No MARK STOLET

From DICE's Frostbite Engine: 5x5 Gaussien filtering

(1)

Tom Clancy's HAWX Publisher: Ubisoft Developer: Ubisoft Romania Normal Quality – Blurred VSM^{th dountourn}

1196 KMH

RADAR

ALT 1444

Flares

(1)

*

Tom Clancy's HAWX Publisher: Ubisoft Developer: Ubisoft Romania Gaussian Shadows

Reach downtown

1196 KMH

< ALT 1444

Pio 100% 35929m

100

Stormrise, Publisher: SEGA Developer: The Creative Assembly Australia Normal Shadow Quality

www.GDConf.com

09

lea

Stormrise, Publisher: SEGA Developer: The Creative Assembly Australia Gaussian Shadows

www.GDConf.com

09

lea

Summary: 1

- » HDAO adds enourmous depth to the scene, at an affordable cost
- » Using Direct3D 10.1 gather4 instruction greatly accelerates performance
- » Growing number of game developers using the effect
- » Mail jon.story@amd.com if you would like to know more...

Summary: 2

- » Conventional high quality shadow filtering is suprisingly fast
 - » Even under Direct3D 10.0/9
- » Direct3D 10.1 delivers the best performance
 - » No reason not to use gaussian shadows!
 - » Direct3D 11 supports Gather()!
- » Mail <u>holger.gruen@amd.com</u> if you want the shaders or the derivations for (N/2)x(N/2) PCF sample shadows

ea

Questions?

Please fill in the feedback forms...

www.GDConf.com