
Insomniac Physics

Eric Christensen

GDC 2009



Overview

• Go over the evolution of IG physics 

system

• Shaders

• Library Shaders

• Custom event shaders



Original Design

Resistance: Fall of Man

• Ported From PC to PS3

• PPU Heavy

• SPU Processes Blocked

• Two Jobs (Collision, Simulation)

• Simulation Jobs too memory heavy 

dispatched to PPU version.

• Expensive



Original Design

Resistance: Fall of Man

Physics Update

Gather Potentially

Colliding Objects



Original Design

Resistance: Fall of Man

Physics Update

Cache Collision

Geometry



Original Design

Resistance: Fall of Man

Physics Update

Run

SPU Collision Jobs



Original Design

Resistance: Fall of Man

Physics Update

Sync



Original Design

Resistance: Fall of Man

Physics Update

Process Contact

Constraints



Original Design

Resistance: Fall of Man

Physics Update

Create Simulation

Pools



Original Design

Resistance: Fall of Man

Physics Update

Run

SPU Simulation Jobs



Original Design

Resistance: Fall of Man

Physics Update

Run Simulations

Too Big For SPU!



Original Design

Resistance: Fall of Man

Physics Update

Sync



Original Design

Resistance: Fall of Man

Physics Update

Process Results



Original Design

Resistance: Fall of Man

Physics Update

Call Events



Original Design

Resistance: Fall of Man

Physics Update

Update Joints



Original Design

Resistance: Fall of Man

• Simulation Jobs Ran as Pools were 

generated.

• PPU Simulation Jobs ran concurrently with 

the SPU Simulation Jobs

• This was the ONLY asynchronous benefit!

• Not much!



Original Design

Resistance: Fall of Man

• Physics had the largest impact on frame 

rate

• Pipeline design made it difficult to reliably 

optimize

• There was A LOT to learn



Phase 2

Ratchet & Clank Future

• Collision and Simulation run in a single 

SPU Job

• Single sync-point

• Large PPU window from start of Job to 

End of Job

• Use of Physics Shaders



Physics Update

PPU Work

Phase 2

Ratchet & Clank Future

Gather Potentially Colliding Objects



Physics Update

PPU Work

Phase 2

Ratchet & Clank Future

Cache Collision Geometry



Physics Update

PPU Work

Phase 2

Ratchet & Clank Future

Start Physics SPU Jobs



Physics Update

PPU Work

Phase 2

Ratchet & Clank Future

Do Collision



Physics Update

PPU Work

Phase 2

Ratchet & Clank Future

Generate Simulation Pools



Physics Update

PPU Work

Phase 2

Ratchet & Clank Future

Simulate



Physics Update

PPU Work

Phase 2

Ratchet & Clank Future

Update Joints



Physics Update

PPU Work

Phase 2

Ratchet & Clank Future

DMA Results



Physics Update

PPU Work

Phase 2

Ratchet & Clank Future

Sync



Physics Update

PPU Work

Phase 2

Ratchet & Clank Future

Update Events



Phase 2

Ratchet & Clank Future

• Shaders helped free up local store

• Each big component had it’s own set of 

shaders

• Constraints

• Solvers

• User customized data transformation



Physics Intersection Shaders
Example Function Prototype

unsigned int SphereOBB(const CollPrim &a, const CollPrim &b, CollResult *results)

• Shaders are loaded into local store during 

the collision process and called via a 

function table using a mask created by 

geometry ID

• Rollback local store when done

• Savings of up to 70k of local store usage



Physics Jacobian Shaders
Example Function Prototype

unsigned int BuildJDBall(Constraint *c, Manifold *m, RigidBody *rblist, float fps, 

float error, float dscale, Jacobian *jlist, 

CommonTrig *trig_funcs, CommonFunc *common_funcs, 

ConstraintFunc *constraint_util);

• An example of a shader being called from 
another shader

• Constraints are sorted by type, then the 
corresponding shader is loaded to process a 
group of like constraints

• Saves us roughly 100k!

• We can add more constraint types without 
worrying about impact on kernel size



Physics Jacobian Shaders
Example Function Prototype

unsigned int BuildJDBall(Constraint *c, Manifold *m, RigidBody *rblist, float fps, 

float error, float dscale, Jacobian *jlist, 

CommonTrig *trig_funcs, CommonFunc *common_funcs, 

ConstraintFunc *constraint_util);

• CommonTrig contains pointers to 

trigonometry functions that live in the main 

physics kernel

• Sin, Cos, ACos, Atan, etc…

• Any optimizations will benefit the shaders 

without having to re-build them



Physics Jacobian Shaders
Example Function Prototype

unsigned int BuildJDBall(Constraint *c, Manifold *m, RigidBody *rblist, float fps, 

float error, float dscale, Jacobian *jlist, 

CommonTrig *trig_funcs, CommonFunc *common_funcs, 

ConstraintFunc *constraint_util);

• CommonFunc contains pointers to 

standard functions stored in the physics 

kernel

• Printf, Dma(get,put), etc…



Physics Jacobian Shaders
Example Function Prototype

unsigned int BuildJDBall(Constraint *c, Manifold *m, RigidBody *rblist, float fps, 

float error, float dscale, Jacobian *jlist, 

CommonTrig *trig_funcs, CommonFunc *common_funcs, 

ConstraintFunc *constraint_util);

• ConstraintFunc contains pointers to constraint 

utility functions that live in the physics kernel

• Generating test vectors for limits

• Constraint smoothing

• Shared between all constraints that have limits 

so optimization is a great benefit



Physics Solver Shaders
Example Function Prototype

void SolverSim(SimPool *sim_pool, Manifold *m, char *dimensions, int *jd_build_ea,

int *jd_build_size, ManagedLS *allocator, CommonFunc *common_funcs,

CommonTrig *trig_funcs, ConstraintFunc *constraint_util);

• One of many solver shaders that get 
loaded by the main physics kernel

• Full Simulation, IK, or “cheap” objects

• jd_build_ea/size tells us about our 
Jacobian functions (where they live / size)

• Local store allocator provided for scratch



Custom Event Shaders

• Anyone can author their own custom event 

shader for physics

• Currently we have two custom event 

shaders. 

• The physics kernel passes common 

functions and a list of DMA tags



Custom Event Shaders

• Work memory is passed from to kernel to 

accommodate any temporary data. 

Currently this is 2k

• Shader author can DMA new data to a 

PPU buffer of choice



Phase 3

Resistance 2

• Immediate and Deferred Modes

• Constraint Data Streaming

• Using library shaders for collision



Physics Update

PPU

Work
PPU Work

Phase 3

Resistance 2

PPU Work

Create Entity (moby) Lists

Cache Collision Geometry

[Immediate Jobs]



Physics Update

PPU

Work
PPU Work

Phase 3

Resistance 2

PPU Work

Start Immediate Jobs



Physics Update

PPU

Work
PPU Work

Phase 3

Resistance 2

PPU Work

Update Immediate Physics Jobs



Physics Update

PPU

Work
PPU Work

Phase 3

Resistance 2

PPU Work

Sync Immediate Physics Jobs



Physics Update

PPU

Work
PPU Work

Phase 3

Resistance 2

PPU Work

Call Events [immediate]



Physics Update

PPU

Work
PPU Work

Phase 3

Resistance 2

PPU Work

Create Entity (moby) Lists

Cache Collision Geometry

[Deferred Jobs]



Physics Update

PPU

Work
PPU Work

Phase 3

Resistance 2

PPU Work

Start Deferred Physics Jobs



Physics Update

PPU

Work
PPU Work

Phase 3

Resistance 2

PPU Work

Update Deferred Jobs



Physics Update

PPU

Work
PPU Work

Phase 3

Resistance 2

PPU Work

Sync Deferred Physics Jobs



Physics Update

PPU

Work
PPU Work

Phase 3

Resistance 2

PPU Work

Call Events [deferred]



Immediate and Deferred Modes

• Physics objects that had no other 

gameplay or animation based 

dependencies didn’t need to finish in one 

frame

• Ragdolls had a one frame immediate 

update and then defaulted to deferred so 

they could reflect one frame of simulation 

without “popping”



Immediate and Deferred Modes

• IK is run in immediate mode because it is 

being constantly being tweaked by 

gameplay. Lag is not an option

• Having a deferred process improved our 

frame rate immensely since the majority of 

the high volume environments had “fire-

and-forget” physics objects



Constraint Data Streaming

• Even with shaders, solver could run out of 

local store

• Changed the solver update so that only 8 

chunks of constraint data were allocated

• Solver chews on data while DMAing next 

list of constraints



Collision Shader Library

• Having multiple versions of the same type 
of thing adds more work and you have to 
optimize more than once.

• Not practical

• Physics native collision routines made 
available to all

• Great re-use and optimization benefit

• Resistance 2 successfully shipped with 
this model in place



Current Phase

• Building of physics object lists as an SPU 

job

• Atomic allocation of PPU memory for 

heavily used data types as well as physics 

scratch memory

• Use of library shaders for broad phase 

collision caching



Physics Update

P

P

U
PPU PPU

Phase 3

Resistance 2

PPU PPU PPU
P

P

U

Start Entity Gathering & Collision Caching

SPU Job [for immediate jobs]



Physics Update

Phase 3

Resistance 2

Gather Entities

Cache Collision, Pre-culling

P

P

U
PPU PPU PPU PPU PPU

P

P

U



Physics Update

Phase 3

Resistance 2

Sync Gathering Jobs [for immediate]

P

P

U
PPU PPU PPU PPU PPU

P

P

U



Physics Update

Phase 3

Resistance 2

Start Immediate Physics Jobs

P

P

U
PPU PPU PPU PPU PPU

P

P

U



Physics Update

Phase 3

Resistance 2

Update Immediate Physics Jobs

P

P

U
PPU PPU PPU PPU PPU

P

P

U



Physics Update

Phase 3

Resistance 2

Sync Immediate Jobs

P

P

U
PPU PPU PPU PPU PPU

P

P

U



Physics Update

Phase 3

Resistance 2

Call Events [immediate]

P

P

U
PPU PPU PPU PPU PPU

P

P

U



Physics Update

Phase 3

Resistance 2

Start Entity Gathering & Collision Caching

SPU Job [for deferred jobs]

P

P

U
PPU PPU PPU PPU PPU

P

P

U



Physics Update

Phase 3

Resistance 2

Gather Entities

Cache Collision, Pre-culling

P

P

U
PPU PPU PPU PPU PPU

P

P

U



Physics Update

Phase 3

Resistance 2

Sync Gathering Jobs [for deferred]

P

P

U
PPU PPU PPU PPU PPU

P

P

U



Physics Update

Phase 3

Resistance 2

Start Deferred Jobs

P

P

U
PPU PPU PPU PPU PPU

P

P

U



Physics Update

Phase 3

Resistance 2

Update Deferred Jobs

P

P

U
PPU PPU PPU PPU PPU

P

P

U



Physics Update

Phase 3

Resistance 2

Sync Deferred Jobs

P

P

U
PPU PPU PPU PPU PPU

P

P

U



Physics Update

Phase 3

Resistance 2

Call Events [deferred]

P

P

U

PPU PPU PPU PPU PPU
P

P

U



Building Object Lists

• Object list building was taking up valuable 

time

• Caching geometry was a blocked process 

on the PPU

• Very expensive 

• Now all object lists and geometry caches 

are generated on the SPU



Building Object Lists

• Larger physics data types organized for 

streaming

• Generating object lists requires allocation 

of data structures from the PPU

• This includes allocating scratch space for 

joint re-ordering and packed rigid body 

data



Atomic Allocation

• Converted PPU fixed block allocations to 

atomic allocations

• Physics scratch buffer allocation had to be 

atomic as well

• Rather straight-forward but… 

• Exposed a lot of pre-existing problems 

with the way data was allocated on the 

PPU



Broad Phase Collision Shaders

• Previously, was only possible to gather 
game collision geometry on the PPU

• Insomniac Collision System ran on its own 
SPU

• Now the functions are in a shader library

• We can build physics collision data on the 
SPU through the use of the shader library 
interface

• Saved valuable time!



Looking Forward

• Optimize DMAs

• Better data organization

• Convert more of the physics kernel into 

Shaders

• Find more opportunities for interleaving 

SPU update with PPU



Eric Christensen

Insomniac Games

Principal Engine Programmer

ec@insomniacgames.com


