Developing Software for the

PS3/Cell Platform

Mike Acton
macton@insomniacgames.com

IEHFCHE b &

«*Lﬁﬁif’ FUTIHE

OO TESTRICTIONA » 4 Only On PIuyStution! @ PLAYSTATION Network

TTTTTTTTTTTTTT

/
& o LHNI(/

TS PR BOOTT

~ [OYNT
EEEEEEEEEEEEEEEE

EEEEE

M
C
C‘
k
C
h
0
} 2
C
d
Li

The Cell Processor

A quick introduction to the hardware

i I

& 4.._“*.'1_.-_. q._n.___.r'_._H.F L.l.q __.P.l.,...__.-_ 4 _“._._._. _1:___
+ ﬁiﬁh A _..;_ﬂ‘ﬂh rﬂu-m.mrmﬂq_ww ki .m. x.u 3. .. el 1 i T

A _ n_ _T
i %
_m..““m____ .:_ ..“

3

..;.:ﬁ x
.Hm_, (il %m

_w?rm wﬁ _:.

o
—ln—. - ‘

|| [Fest 8.Deb _._ﬁ m_T :

Ny i e L r B I_...l.u..l..ll.l..ll.m..l-.il._r. -

LL..LT__ mI_ i
._ .

E)
o
@
1]
]
a3
)
[=
o
©
=
=
L
°
T
o
=
11
o
m
o
¥

._._._.-__T.-t_- GBI T PR B TR P

=5

SPE

By B

Oy oy oy E
SEPE SPE SPE SPE

I;snlma e_ngj

“Forward|
Macro

Cell SPE Architecture

Each SPE is an independent vector CPU
capable of 32 GFLOPs or 32 GOPs (32 bit @ 4GHz.)

Even Pipe Odd Pipe

v

Element Interconnect Bus (EIB)

© Nicholas Blachford 2005

The Cell is...

e ... not a magic bullet.
e ... not a radical change in high-performance design.
e ... fun to program for!

Programming for Games

Quick background of game
development

Performance

Mostly "soft" real-time
(60Hz or 30HZz)

Languages and Compilers

Other Processers and I/O

GPU, Blu-ray, HDD, Peripherals,
Network

Many Assets

Art, Animation, Audio

"Game" vs. "Engine" code

Divisions of development

Our Approach to the Cell for
games

What does it change?

WARNING!

I«

“‘Manual Solution” “Very
optimized codes but at
cost of programmability.”

Marc Gonzales, IBM

Good solutions for the Cell
will be good solutions on other
platforms.

High-performance code is
easy to
port to the Cell.

Poorly performing code from
any
platform is hard to port.

Data and code
optimization are
merely important

on conventional architectures

... On the Cell, they're critical.

Common Complaints

#1 "But, it's too hard!”

Multi-processing is not new

e Trouble with the SPUs usually is just trouble with multi-core.
e You can't wish multi-core programming away.
e |t's part of the job.

"Cache and DMA data design
too complex”

Enforced simplicity

Not that different from calling
memcpy

SPU DMA vs. PPU memcpy

DMA from main ram to local store PPU memcpy from far ram to near ram

wrch $chlé, ls addr mr 53, near addr
wrch $chl8, main_addr mr 54, far addr
wrch $5chl9, size mr $5, size
wrch $ch20, dma tag bl memcpy

il $2, MFC_GET CMD

wrch Sch2l, s$2

DMA from local store to main ram PPU memcpy from near ram to far ram

wrch Schlé, ls addr mr 54, near addr
wrch $chl8, main addr mr $3, far addr
wrch $chl9, size mr $5, size
wrch $ch20, dma tag bl memcpy
il 52, MFC PUT CMD

wrch $ch21, $2

Conclusion: If you can call memcpy, you can DMA data.

But you get extra control

SPU Synchronization

Fence: Transfer after previous
with the same tag

DMA from main ram to local store -
PUTF Transfer previous before PUT

PUTLF Transfer previous before PUT LIST
GETF Transfer previous before GET
GETLF Transfer previous before GET LIST

Example Sync

Do other productive work while DMA
is happening... - .
FP g Barrier: Transfer after previous and

before next with the same tag

PUTBR Fixed order PUT
PUTLE Fixed order PUT LIST
GETBE Fixed order GET
GETLE Fixed order GET LIST

(Sync) Wait for DMA to complete

il 52, 1 : .
. $2, 55 dma tag Lock Line Reservation
$ch22, &2 -

wrch

il §3, MFC_TAG UPDATE ALL

wrch 5ch23, §3

rdch 52, sch24 GETLLAR Gets locked line. (PPU: lwarx, ldarx)
PUTLLC Puts locked line. (PPU: stwex, stdex)

"My code can't be made
parallel.”

Yes. It can.

"C/C++ 1s no good for parallel
programming”

he solution Is to understand the issues --
not to hide them.

"But I'm just doing this one
little thing... it doesn't make
any difference.”

Is it really just you?
Is it really just this one thing?

It's all about the SPUs

Designing code for concurrency

“What's the easiest way to
split programs into
SPU modules?”

et someone else do |t.

But if that someone is you...

Rules and guidelines

Rule #1

DATA IS MORE IMPORTANT
THAN CODE

e Good code follows good data.
e Fast code follows good data.
e Small code follows good data.

Guess what follows bad data.

Rule #2

WHERE THERE IS ONE,
THERE IS MORE THAN ONE

The "domain-model design”
Lie.

Rule #3

SOFTWARE IS NOT A
PLATFORM

Unless you are a
CS Professor.

The real difficulty is in
the unlearning.

The ultimate goal:

Get everything on the SPUs.

Complex systems can go on the SPUs

e Not just streaming systems
e Used for any kind of task
e But you do need to consider some things...

e Data comes first.
e Goal is minimum energy for transformation.
e \What is energy usage”?

o CPU time.

o Memory read/write time.

o Stall time.

Transform()

Design the transformation pipeline back to front.

e Start with your destination data and work backward.

Changes are inevitable -- Pay less for them.

Front to Back

Started Here Rendered Dynamic Geometry

Simulate Glass using Fake Mesh Data

Had a really nice looking simulation

buftiordd faid oit —aan that Faked Inputs to Triangulate

enerate Crack

Geometry

igTriangulate

The rendering part
of the pipeline didn’t
completely support
the outputs of the
triangulation library

This stage was worthless

Then wrote igTriangulate

Oops, the only possible output

didn’t support the “glamorous” crack

rendering

Realized that the level of detail
from the simulation wasn'’t
necessary considering that the
granularity restrictions
(memory, cpu)

Could not support it.

Even worse, the inputs that were

being provided to the triangulation

library weren’t adequate. Needed

more information about retaining
surface features.

useful (and expected) results to the

and output transformed data to igTriangulate

render stage

wrote the simulation to provide

Simulate Glass
triangulation library.

Could have avoided re-writing the simulation if the design
process was done in the correct order.

Good looking results were arrived at with a much smaller
processing and memory impact.

Full simulation turned out to be un-necessary since it's
outputs weren't realistic considering the restrictions of the
final stage.

Proof that “code as you design” can be disasterous.
Working from back to front forces you to think about your
pipeline in advance. It's easier to fix problems that live in
front of final code. Wildly scattered fixes and data format
changes will only end in sorrow.

SPUs use the canonical data.

Best format for the most expensive
case.

Minimize synchronization

Start with the smallest
synchronization method possible.

Often is lock-free single
reader, single writer queue.

PPU Ordered Write SPU Ordered Write

Write Data Write Data

(with Fence)

Increment Index

lwsync
_ Increment Index

Load balancing

Data centric design will give coarser
divisions.

Start with simplest task queues

For constant time transforms:
e Divide into multiple queues

For other transforms:
e Use heuristic to decide times and a single entry queue to
distribute to multiple queues.

Then work your way up.

e |s there a pre-existing sync point that will work? (e.g. vsync)
e Can you split your data into need-to-sync and don't-care?

2 Resistance2
Resistance : Fall of Man -
Immediate Effect Updates Only Immediate & Deferred Effect Updates +

Reduced Sync Points

PPU PPU

Sync Immediate Updates For Last Frame
Run Deferred Effect Update/Render

Update Game Objects
Update Game Objects Deferred Update & Render

Sync Deferred Updates

Run Immediate Effect Updates et Undde ot Otiocts

Immediate Update Run Effects System Manager

Finish Frame Update & Start Rendering System Manager

Sync Effect System Manager
Run Immediate Effect Update/Render

Finish Frame Update & Start Rendering

Sync Immediate Effect Updates

Generate Push Buffer To Render Frame
Immediate Update & Render

Generate Push Buffer To Render Frame (Can run past end of

PPU Frame due to
Generate Push Buffer To Render Effects reduced sync points)

Finish Push Buffer Setup Finish Push Buffer Setup

I - PPU time overlapping effects SPU time
I - PPU time spent on effect system

I - PPU time that cannot be overlapped BasisiancasFall of Man

Immediate Effect Updates Only

PPU

Update Game Objects

No effects can be updated till all
game objects have updated so
attachments do not lag.

Visibility and LOD culling
done on PPU before creating

Each effect is a separate SPU job Run Immediate Effect Updates p
i) P)t L Effect updates running on

all available SPUs (four)

Finish Frame Update & Start Rendering b EhRks

Likely to stall here , due to Sync Immediate Effect Updates

limited window in which
1o update all effects.

Generate Push Buffer To Render Frame

The number of effects that could Generate Push Buffer To Render Effects
render were limited by available
PPU time to generate their PBs.

Finish Push Buffer Setup

I = PPU time overlapping effects SPU time
I - PPU time spent on effect system
I = PPU time that cannot be overlapped Resistance?
Immediate & Deferred Effect Updates +
Reduced Sync Points

PPU

Sync Immediate Updates For Last Frame
N) Run Deferred Effect Update/Render
inltéi_il PIB glll)?_fjifs}tlgf;s CfonehOgPEPU Huge amount of previously unused
ingle Job Tor eac SPU processing time available.

(Anywhere from one to three)

Deferred effects are one frame
behind, so effects attached to
moving objects usually should not
be deferred.

Update Game Objects Deferred Update & Render

Sync Deferred Updates

PostUpdate Game Objects SPU manager handles all visibility

Run Effects System Manager AL DR C{;ﬂ"t?]gé ggt;?us'y Btk

Finish Frame Update & Start Rendering System Manager Generates lists of instances for
update jobs to process.

Sync Effect System Manager

it BB aioeahons Aone oe Pt Run Immediate Effect Update/Render Immediate updates are allowed to

: p till the beginning of the next
Single SPU job for each SPU Sl
(Anywhere from one to three) : frame, as they do not need
Immediate Update & Render to sync to finish generating
this frame’s PB

Doing the initial PB alloc on the Generate Push Buffer To Render Frame
PPU eliminates need to sync SPU (ggrbrg?aﬁqaes tdigdtgf

Smaller window available to update
immediate effects, so only effects
attached to moving objects should

Finish Push Buffer Setup be immediate.

updates before generating full PB. reduced sync points)

Write “optimizable” code.

Simple, self-contained loops
Over as many iterations as possible
No branches

Transitioning from "legacy”
systems...

An example from RCF

FastPathFollowers C++ class

e And it's derived classes

e Running on the PPU

e Typical Update() method

e Derived from a root class of all “updatable” types

Where did this go wrong”?

What rules where broken?
e Used domain-model design
e Code “design” over data design
e No advatage of scale
e No synchronization design
e No cache consideration

Result

e Typical performance issues

e Cache misses

e Unnecessary transformations

e Didn't scale well

e Problems after a few hundred updating

Step 1: Group the data together

“Where there's one, there's more than one.”

e Before the update() loop was called,

e Intercepted all FastPathFollowers and derived classes
e Removed them from the update list.

e Then kept in a separate array.

Step 1: Group the data together

e Created new function, UpdateFastPathFollowers()
e Used the new list of same type of data

e Generic Update() no longer used

e (Ignored derived class behaviors here.)

Step 2: Organize Inputs and Outputs

e Define what's read, what's write.

e Inputs: Position, Time, State, Results of queries, Paths
e Outputs: Position, State, Queries, Animation

e Read inputs. Transform to Outputs.

e Nothing more complex than that.

Step 3: Reduce Synchronization Points

e Collected all outputs together

e Collected any external function calls together into a
command buffer

e Separate Query and Query-Result

e Effectively a Queue between systems

e Reduced from many sync points per “object” to one sync
point for the system

Before Pattern

Loop Objects
e Read Input O
e Update 0
e \Write Output
e Read Input 1
e Update 1
e Call External Function
e Block (Sync)

After Pattern (Simplified)

Loop Objects
e Read Input O, 1
e Update O, 1
e Write Output, Function to Queue

Block (Sync)

Empty (Execute) Queue

Next: Added derived-class functionality

e Similarly simplified derived-class Update() functions into
functions with clear inputs and outputs.

e Added functions to deferred queue as any other function.

e Advantage: Can limit derived functionality based on count,
LOD, etc.

Step 4: Move to PPU thread

e Now system update has no external dependencies

e Now system update has no conflicting data areas (with
other systems)

e Now system update does not call non-re-entrant functions

e Simply put in another thread

Step 4: Move to PPU thread

e Add literal sync between system update and queue
execution

e Sync can be removed because only single reader and
single writer to data

e Queue can be emptied while being filled without collision

See also: R&D page at insomniacgames.com on multi-threaded
optimization

Step 5: Move to SPU

e Now completely independent thread
e Can be run anytime

e Move to new SPU system

e Using SPU Shaders

SPU Shaders

e On SPU, Code is data
e Double buffer / stream same as data
e Very easy to do (No need for special libraries)
o Compile the code
o Dump the object as binary
o Load binary as data
o Jump to binary location (e.g. Normal function pointer)
o Pass everything as parameters, the ABl won't change.

The 256K Barrier

The solution is simple:
e Upload more code when you need it.
e Upload more data when you need it.
e Data is managed by traditional means
e i.e. Double, triple fixed-buffers, etc.
e Code is just data.

The End

e Programming for the SPUs is not really differentThese
ISsues are not going to go away.

e Teams need practice and experience.

e Modern systems still benefit from heavy optimization.

e Design around asynchronous processing.

e Don't be afraid to learn and change.

