
Developing Software for the 
PS3/Cell Platform

Mike Acton
macton@insomniacgames.com





The Cell Processor

A quick introduction to the hardware













The Cell is...

... not a magic bullet.

... not a radical change in high-performance design.

... fun to program for!



Programming for Games

Quick background of game 
development



Performance

Mostly "soft" real-time 
(60Hz or 30Hz)



Languages and Compilers

 



Other Processers and I/O

GPU, Blu-ray, HDD, Peripherals, 
Network



Many Assets

Art, Animation, Audio



"Game" vs. "Engine" code

Divisions of development



Our Approach to the Cell  for 
games

 
What does it change?



“Manual Solution” “Very 
optimized codes but at

cost of programmability."

Marc Gonzales, IBM

WARNING!



Good solutions for the Cell
will be good solutions on other

platforms.



High-performance code is 
easy to

port to the Cell.



Poorly performing code from 
any

platform is hard to port.



Data and code
optimization are 
merely important

on conventional architectures

... On the Cell, they're critical.



Common Complaints



#1 "But, it's too hard!"



Multi-processing is not new 

Trouble with the SPUs usually is just trouble with multi-core.
You can't wish multi-core programming away. 
It's part of the job. 



"Cache and DMA data design 
too complex"

Enforced simplicity



Not that different from calling 
memcpy





But you get extra control





"My code can't be made 
parallel."

Yes. It can.



"C/C++ is no good for parallel 
programming"

The solution is to understand the issues --
not to hide them.



"But I'm just doing this one 
little thing... it doesn't make 

any difference."

Is it really just you? 
Is it really just this one thing?



It's all about the SPUs

Designing code for concurrency



“What's the easiest way to 
split programs into 

SPU modules?”



Let someone else do it.



But if that someone is you... 

Rules and guidelines



Rule #1

DATA IS MORE IMPORTANT
THAN CODE



Good code follows good data.
Fast code follows good data.
Small code follows good data.

Guess what follows bad  data.



Rule #2
 

WHERE THERE IS ONE, 
THERE IS MORE THAN ONE



The "domain-model design" 
Lie.



Rule #3
 

SOFTWARE IS NOT A 
PLATFORM



Unless you are a 
CS Professor.



The real difficulty is in 
the unlearning. 



The ultimate goal: 

Get everything on the SPUs.



Complex systems can go on the SPUs

Not just streaming systems
Used for any kind of task
But you do need to consider some things...



Data comes first. 
Goal is minimum energy for transformation.
What is energy usage? 

CPU time. 
Memory read/write time. 
Stall time.



Design the transformation pipeline back to front. 

Start with your destination data and work backward.
 
 
 
 
 
 
 
 
 
 
Changes are inevitable -- Pay less for them.





SPUs use the canonical data.

Best format for the most expensive 
case.



Minimize synchronization

Start with the smallest 
synchronization method possible.



Often is lock-free single 
reader, single writer queue.





Load balancing

Data centric design will give coarser 
divisions.



For constant time transforms:
Divide into multiple queues

 
For other transforms: 

Use heuristic to decide times and a single entry queue to 
distribute to multiple queues.

Start with simplest task queues



Then work your way up.

Is there a pre-existing sync point that will work? (e.g. vsync)
Can you split your data into need-to-sync and don't-care?









Write “optimizable” code.

Simple, self-contained loops
Over as many iterations as possible

No branches



Transitioning from "legacy" 
systems...

An example from RCF



FastPathFollowers C++ class

And it's derived classes
Running on the PPU
Typical Update() method
Derived from a root class of all “updatable” types



Where did this go wrong? 

What rules where broken?
Used domain-model design
Code “design” over data design
No advatage of scale
No synchronization design
No cache consideration



Result

Typical performance issues
Cache misses
Unnecessary transformations
Didn't scale well
Problems after a few hundred updating



Step 1: Group the data together

“Where there's one, there's more than one.”
  

 Before the update() loop was called,
 Intercepted all FastPathFollowers and derived classes 
 Removed them from the update list.
 Then kept in a separate array.



Step 1: Group the data together

Created new function, UpdateFastPathFollowers()
Used the new list of same type of data
Generic Update() no longer used
(Ignored derived class behaviors here.)



Step 2: Organize Inputs and Outputs

Define what's read, what's write.
Inputs: Position, Time, State, Results of queries, Paths
Outputs: Position, State, Queries, Animation
Read inputs. Transform to Outputs.
Nothing more complex than that.



Step 3: Reduce Synchronization Points

Collected all outputs together
Collected any external function calls together into a 
command buffer
Separate Query and Query-Result
Effectively a Queue between systems
Reduced from many sync points per “object” to one sync 
point for the system



Before Pattern

Loop Objects
Read Input 0
Update 0
Write Output
Read Input 1
Update 1
Call External Function
Block (Sync)



After Pattern (Simplified)

Loop Objects
Read Input 0, 1
Update 0, 1
Write Output, Function to Queue

 
Block (Sync)
 
Empty (Execute) Queue



Next: Added derived-class functionality

Similarly simplified derived-class Update() functions into 
functions with clear inputs and outputs.
Added functions to deferred queue as any other function.
Advantage: Can limit derived functionality based on count, 
LOD, etc.



Step 4: Move to PPU thread

Now system update has no external dependencies
Now system update has no conflicting data areas (with 
other systems)
Now system update does not call non-re-entrant functions
Simply put in another thread



Step 4: Move to PPU thread

Add literal sync between system update and queue 
execution
Sync can be removed because only single reader and 
single writer to data
Queue can be emptied while being filled without collision

 
 
 
 
See also: R&D page at insomniacgames.com on multi-threaded 
optimization



Step 5: Move to SPU

Now completely independent thread
Can be run anytime
Move to new SPU system 
Using SPU Shaders



SPU Shaders

On SPU, Code is data
Double buffer / stream same as data
Very easy to do (No need for special libraries)

Compile the code
Dump the object as binary
Load binary as data
Jump to binary location (e.g. Normal function pointer)
Pass everything as parameters, the ABI won't change.



The 256K Barrier

The solution is simple:
Upload more code when you need it.
Upload more data when you need it.
Data is managed by traditional means 
i.e. Double, triple fixed-buffers, etc.
Code is just data.



The End

Programming for the SPUs is not really differentThese 
issues are not going to go away.
Teams need practice and experience.
Modern systems still benefit from heavy optimization.
Design around asynchronous processing.
Don't be afraid to learn and change.


