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Motivation

Code is compiled, data is “built”
What should be code, what should be data? Plenty, right?

Game logic, geometry, textures...
What is not clearly either?

Particle definitions, animation states & blend trees, event &
gameplay scripting/tuning, more...
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The in between stuff

We have a legacy of Lisp at Naughty Dog
Common Lisp, GOAL, GOOS, GOOL, scripting, animation
tools – more than a dozen Lisps all told.
GOAL is the primary influence. We stopped using it, so we
need something to replace some of its features.

Lisp supports the code/data duality implicitly
It also has features (like macros, symbol table) that open
unanticipated opportunities
We will build a solution in Lisp (well, Scheme actually)
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Let’s define some types

A DC type declaration:
(deftype vec4 (:align 16)
((x float)
(y float)
(z float)
(w float :default 0)
))

Automatically gets translated to a C++ declaration:
struct Vec4
{
float m_x;
float m_y;
...

};
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Types continued

We define some more 3D types

(deftype quaternion (:parent vec4)
())

(deftype point (:parent vec4)
((w float :default 1)
))

(deftype locator ()
((trans point :inline #t)
(rot quaternion :inline #t)
)

)
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Types continued

We define some more 3D types

(deftype quaternion (:parent vec4)
())

(deftype point (:parent vec4)
((w float :default 1)
))

struct Locator
{
Point m_trans;
Quaternion m_rot;

};
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Define some instances

(define *y-axis* (new vec4 :x 0 :y 1 :z 0))
(define *origin* (new point :x 0 :y 0 :z 0))

This instance will be exported (available at runtime):

(define-export *player-start*
(new locator

:trans *origin*
:rot (axis-angle->quaternion *y-axis* 45)
))
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How we use these definitions in C++ code

In our runtime C++ code:

...
#include "dc-types.h"
...
const Locator * pLoc =
DcLookupSymbol("*player-start*");

Point pos = pLoc->m_trans;
...

Liebgold, Dan Adventures in Data Compilation



What is it, and why did we build it?
A crash course with examples

Build upon this basis

We build upon this basis to create many many things
Particle definitions
Animation states
Gameplay scripts
Scripted in-game cinematics
Weapons tuning
Sound and voice setup
Overall game sequencing and control
...and more
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