

Precomputed Light Carving into Meshes

Stephan Etienne High Moon Studios

Motivation

GameDevelopers

Conterence

- Good looking pre-computed lighting without the need of big textures
- Cut down on rendering cost by removing a texture fetch

Highlights

- Shadow cutting
- Mesh tessellation
- Lighting
- Simplification
- Pros and cons

Use a Winged-Edge database

- Adding/removing vertices/edges/faces can be painful
- Use winged-edge data structure to minimize pain

Shadow cutting

- Introduced by Alex Vlachos for the Animusic demo presented ay SIGGRAPH 2001
- Need to determine whether a mesh casts a shadow onto another
- Deal with directional lights and point lights separately

If both bounding spheres intersect, both meshes cast a shadow on one another

GameDeveloper

Project center of one bounding sphere onto other line

Compute distance between center point and projected point

Shadow from directional lights

If distance is less than radius of both spheres, one is casting shadow on the other

GameDevelope

- If projected center is in front of other center, mesh is the shadow receiver
- Otherwise, mesh is the shadow caster

Shadows from Point Lights

- If both bounding spheres intersect, both meshes cast a shadow on one another
- Solution Point light and bounding sphere form a conic section
- Sompute α_1 and α_2 , the angle of each conic section

CONTROL March 5-9, 2007 In San Francisco

If $(\alpha_1 + \alpha_2) * 0.5 \ge \beta$, one is shadowing the other

Mesh closest to the light shadows the other one

- Project silhouette of shadow caster onto shadow receiver
- Silhouette edge has one face facing towards light and other facing away
- Construct list of silhouette edges

Cutting the shadow (continued)

GameDevelopen

- Project silhouette edge onto triangle plane
- If projected silhouette edge intersects triangle, split it along projected line
- Tip: Before projecting silhouette edge, translate edge along normal by small negative amount

Tessellation

GameDevelopers

- Necessary to capture fine details in lighting changes
- Sompute per triangle weight base on area size and edges length
- Subdivide until threshold reached
- Stop when max number of vertices have been created

Lighting

GameDevelopers

Conterence

- Use your favorite technique to compute incoming lighting at each vertex
- A global illumination scheme is recommended

A vertex is removed by collapsing it onto one of its neighbor

 V_0 is collapsed at $V_3.$ Edges to V_2 and V_4 and removed

- Remove least important vertices first
- It preserve quality
- It maximizes number of vertices that can be removed

Loss of quality

WWW.GDCONF.COM

Unacceptable

Simplification

- Compute color gradient Color gradient is max difference in color between interpolated vertex and extrapolated vertex

Vertices at the center of a smooth triangle fan are removed

- If vertex is in middle
 - of line segment
- Compute color gradient with interpolated vertex
- If color gradient is small, remove vertex

Removal of a vertex in the middle of a smooth edge

Beware of creating degenerate triangles

Collapsing the edge of a concave triangle fan may result in degenerate shapes

- A There are two possible diagonals for a four sided polygon
- One orientation can look dramatically better than the other one

Benefits

Pros:

- Saves a lot of memory compared to lightmaps
- Improves fill-rate, in particular when up close

Cons:

- Increase vertex transform cost
- Meshes viewed from afar can be more expensive to render

Paper

Paper available at www.HighMoonStudios.com/Research/Pr eComputedLightCarving.pdf

Questions?