
Meeting Players Half Way

Using Adaptive Methods to
Prevent Player Frustration

Irrational Games

Accessible

Not Dumbed Down

Adaptive Training

• Don’t train things the players knows
• Teach players when they screw up
• Help you pick up where you left off

Problem: Games are too
complex

Solution: Training Sequences

Now you’ve got two problems.

• Gameplay Conventions
• Controller Conventions
• Gameplay unique to each game
• Strategy unique to each game

Things To Train

Gameplay Conventions

FPS Controller Conventions

• Jump on face button
• Crouch by clicking movement stick
• Right trigger shoots

• Instantly familiar
• Learn once, apply for many games
• Do you train conventions?

Conventions

• Too Few
– Player doesn’t know conventions
– Player feels lost
– Player miss depth of the game

• Too Many
– Click through
– Annoyed and fraustraing first experience

Training Sequences

Ideally…

• Beginning of the game
• Should be exciting
• Only Introduce the major unique gameplay

Adaptive Training Goals

• Complements linear training sequence
• No more, “Here is how to jump, Marine”
• Wider range of messages

– Strategy
– Hints

• Tool tips for gameplay

Expert Systems

• Designer brain in a box
• Capture expert knowledge in a narrow

domain
• Wide Range of Applications

– Medical Diagnosis
– Accounting (Tax Advisors)
– Tutoring

Bioshock Training Script

• List of Concepts
– List of Conditions - IF-THEN Rules
– Triggers Training Messages

• Conditions only test things in a Fact
Database

• Forward Chaining Inferencing

Infinity Engine Scripting

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

IF
Class(LastAttackerOf(Myself), MAGE)
HPGT(Myself,50)

THEN
RESPONSE #80

Attack(LastAttackerOf(Myself),MELEE)
RESPONSE #40

Help()
RunAway()

END
IF

Exists(LastAttackerOf(ProtectedBy(Myself))
THEN

RESPONSE #100
Attack(LastAttackerOf(ProtectedBy(Myself))

, RANGED)
END

Final Fantasy XII - Gambits

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

Gambit into psudo-code
IF

dead(allies) and has(pheonix_down)

THEN

Use(pheonix_down, dead(allies))

IF

poisoned(allies) and can_cast(poisona)

THEN

cast(poisona, poisoned(allies))

Structure of an Expert System

Knowledge Acquisition

• Gambits are created by an interface by the
User

• Bioshock Training Script created by
designer through a visual scripting system.

Knowledge Base

• If - Then rules
• Gathered from the experts, either directly

or through a knowledge engineer
• Models processes and heuristics of

experts

Inference Engine

• Backwards Chaining
– Given a goal and reach it by deriving facts

• Forward Chaining
– Reach conclusions given facts

Backwards Chaining

• Goal Driven
• Structured Selection

– Find best diagnosis
– Identification

• Can gather data as needed

IF
family is albatross and
color is white

THEN
bird is laysan albatross.

IF
family is albatross and
color is dark

THEN
bird is black footed albatross.

How it works

• Given list of goals
• Assume Then part
• Try to prove If part
• Try to prove family

is albatross

Forward Chaining

• Data driven
• Infer new facts based on current data
• Keep track of current state of inference
• Uses a Fact Database

Example

• Data
– Alice is married to Bob
– Bob is Ken’s father

• IF-THEN Rule
– If X is married to Y and Y is Z's father then X

is Z's mother
• Now this fact can be used in another rule

Fact Database

• Conditions use fact to determine game
state

• Game update facts when needed
• Benefits of separation

– Uniformity of rules
– Optimization (Rete)
– Ease of testing

What’s a Fact?

• (x, on, y)
• Three Slots
• Represents relations, or objects
• String facts for more slots
• (vector, 1, 2, 3) = (vector, 1, vector123),

(vector123, 2, 3)

Pattern Matching

• Wild cards
– ?x named variable
– IF (?x, on, ?x) THEN assert(?x can’t be on

itself)
– ? unnamed wild card, if you don’t need the

value

Using wild cards

• Inference
– (Alice, Married, Bob)
– (Bob, Father, Ken)
– if (?x, Married, ?y) and (?y, Father, ?z) then

assert (?x, Mother, ?z)
• String facts

– if (vector, ?x, ?link) and (?link, ?y, ?z)

Gameplay Example

• Security Systems
– Cameras can see you
– After they spot you they will trigger alarm
– You can evade them or shoot them to stop

triggering of alarm
– You can stop alarm by finding a security

station

Concepts

• Represents a particular aspect of
gameplay
– How to use weapons effectively
– What to do next in a quest
– You can turn off alarms

• Knowledge level
– Models if player understands the concept

• -1 is player doesn't understand the concept
• 1 is player understands the concept

Conditions

• A If-Then rule that can affect the
understanding of concepts

• Example:
– If player has triggered alarm then change

knowledge of Security Alarm by -.1
– If player has shutdown security then change

knowledge of Security Alarm by .5

Fact Design

• Balance of designer and programmer
– logic in condition vs when to assert facts

• Need clear communication of assert vs
retract

• Avoid testing if fact is not true
– AlarmOn
– AlarmOff

Message Triggers

• Display a training message
• Triggered by knowledge level changes
• Can have different levels of training
• Example

– When knowledge level is -.3, show message
telling you to avoid cameras

– When knowledge level is -.6, show modal
tutorial screen with details about the system.

Knowledge Updates

• Bayesian
– Used in tutoring systems, each problem can

be wrong due to multiple failure conditions
• Linear

– Easier to understand and reason with
– Few updating rules,
– unambiguous failures

Implementation

• Modified Unreal 3 Engine
• Uses a visual scripting system based in

UnrealED
• Designer already knows the system
• Design Pattern : Interpreter
• Only need to provided Facts in game code

Sample Script

• Training Script
– Array of Concepts
– Agenda: prioritized list of activated

conditions
• Concept

– Knowledge level
– An array of conditions
– An array of message triggers

• Condition
– Array of Action with results anded
– Array of Array of actions to perform if true
– Weight: How much to modify knowledge
– Priority: position in Agenda
– TickDelay: A hack to improve performance

• Filter actions based on return type
• Logic expression actions

General Actions

Fact Actions

• Operations
– Assert : Allows for forward chaining
– Retract

• Properties
– Number of times of assert since last retract
– Time since last retract
– Time since last assert

More Complex Example

Expert System Advantages

• System independent of game
• Expert System Shells

– Java : Jesse
– C : Clips
– Python : Pychinko

• Lots of existing literature and research

Rete Algorithm

• Avoids linear increase in performance as
rules grow

• Latin for ‘Network’
• Converts IF conditions into a data flow

network.
• Presents simplified algorithm

Example

• Two rules
– if x and y Then p
– if x and y and z Then q

• Evaluates x and y twice
– Operations could be expensive
– (?x, Married, ?z) could match a lot of items

Convert to nodes

Optimize Network

Alpha/Beta Memory

• Alpha Memory
– Store all facts that matched pattern

• Beta Memory
– Stores pairs matched by join nodes

• Only incur cost when facts change
– Insert or remove from alpha/beta memory

Does Adaptive Training Work?

• Don’t Know Yet
– Focus testers have found them useful

• Play Bioshock and get back to me.

Future Improvements

• Integration with difficulty system
• Give player situations to facilitate learning.

References

• Rete Paper : Production Matching for Large
Learning Systems

• Expert System Shell : CLIPS
• Infinity Script Unofficial Guide

