You've been logged out of GDC Vault since the maximum users allowed for this account has been reached. To access Members Only content on GDC Vault, please log out of GDC Vault from the computer which last accessed this account.

Click here to find out about GDC Vault Membership options for more users.

close
    
Session Name: ML Tutorial Day: From Motion Matching to Motion Synthesis, and All the Hurdles In Between
Speaker(s): Fabio Zinno
Company Name(s): Electronic Arts
Track / Format: Programming
Overview: Motion matching started a revolution in the way developers create runtime animation controllers for video game characters, freeing developers from the burden of manually crafted motion trees. Games like 'For Honor', 'UFC' and 'Last of Us' are showing the great benefits in terms of realism and animation quality this technique can provide. Still, motion matching can only choose poses from an animation database, with no ability to generate new ones. Machine learning can help you go a step further, from motion matching to actual motion synthesis.This session will cover state-of-the-art techniques (Phase-Functioned Neural Networks, and Mode-Adaptive Neural Networks) that use neural networks to synthesize motion from examples, explicitly calling out important architecture and implementation details, and spark a discussion on how this technology can be used in a modern game development pipeline.

GDC 2019

Fabio Zinno

Electronic Arts

free content

Programming

Programming